日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知
a
=(sinx,1),
b
=(cosx,-
1
2
)

(I)當
a
b
時,求2cos2x-sin2x的值;
(II)求函數.f(x)=(
a
+
b
b
在[-
π
2
,0]上的值域.
分析:(1)由
a
b
可求得tanx=-2,從而可求得2cos2x-sin2x的值;
(2)利用向量的坐標運算可求得f(x)=
2
2
sin(2x+
π
4
)+
1
4
,再由-
π
2
≤x≤0,求得-
4
≤2x+
π
4
π
4
,從而可求得f(x)的值域.
解答:解:(Ⅰ)∵
a
b
,
1
2
sinx+cosx=0,即tanx=-2;
∴2cos2x-sin2x=
2cos2x-sin2x
sin2x+cos2x

=
2-tanx
1+tan2x
=
6
5

(Ⅱ)∵
a
+
b
=(sinx+cosx,
1
2
),
∴f(x)=(
a
+
b
b
=
1
2
sin2x+
1
2
cos2x+
1
4
=
2
2
sin(2x+
π
4
)+
1
4

∵-
π
2
≤x≤0,
∴-
4
≤2x+
π
4
π
4

∴-1≤sin(2x+
π
4
)≤
2
2
,
1-2
2
4
≤f(x)≤
3
4

∴f(x)=(
a
+
b
b
在[-
π
2
,0]上的值域為[
1-2
2
4
3
4
].
點評:本題考查正弦函數的定義域和值域,著重考查三角函數值的計算與某段區間上正弦函數的值域,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
a
=(sinx,1)
,
b
=(2cosx,2+cos2x)
,函數f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數f(x)的最大值及取得最大值的自變量x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,cosx)
b
=(
3
cosx,cosx)
,設函數f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調遞增區間;
(2)當x∈[-
π
6
,
12
]
時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函數f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其圖象對稱中心的坐標;
(2)當0≤x≤
π
2
時,求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•蕪湖二模)已知
a
=(sinx,1)
,
b
=(cosx,-
1
2
)
,函數f(x)=
a
•(
a
-
b
)
,那么下列四個命題中正確命題的序號是
②③④
②③④

①f(x)是周期函數,其最小正周期為2π.
②當x=
π
8
時,f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函數f(x)的一個單調遞增區間;
④點(-
π
8
,2)是函數f(x)的一個對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,cosx),
b
=(
3
cosx,cosx)
,設函數f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調遞增區間;
(2)當x∈[-
π
6
,
12
]
時,求f(x)的最值并指出此時相應的x的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品视频一区二区三区 | 超碰免费av | 最新永久地址 | 一色桃子av一区二区免费 | 亚洲精品久久视频 | 玖玖色资源 | 成人高清在线观看 | 久久久美女 | 国产亚洲精品久久久久久青梅 | 在线视频中文字幕 | 日日操视频 | 日本a在线播放 | 人人种亚洲 | 精品视频免费观看 | 日韩精品一区二区三区四区视频 | 久久久精品影院 | 日韩在线观看一区 | 少妇一区二区三区毛片免费下载看 | 亚洲婷婷一区二区三区 | 麻豆专区一区二区三区四区五区 | 国产一区二区三区在线免费观看 | 日韩视频一区二区 | 国产精品成人在线观看 | 7777视频| a在线播放 | 蜜桃视频网站在线观看 | 99久久久国产精品 | 午夜在线一区 | 龙珠z在线观看 | 综合激情视频 | 欧美精品在线一区二区三区 | 欧美日韩一区二区三区在线观看 | 国产欧美精品在线 | 欧美黑人一级爽快片淫片高清 | 久久伊人一区 | 97精品 | 精品日韩av | 午夜资源 | 波多野结衣电影一区 | 国产精品视频在线观看 | 91精品国产综合久久久蜜臀粉嫩 |