【題目】(1)已知函數,求函數
在
時的值域;
(2)函數有兩個不同的極值點
,
,
①求實數的取值范圍;
②證明:.
(本題中可以參與的不等式:,
)
【答案】(1)(2)①
②詳見解析
【解析】
(1)首先可對函數進行求導,然后分析函數
在
上的單調性并求出最值,最后即可求出函數
在
上的值域;
(2)①首先將“有兩個不同極值點”轉化為“
有兩個不同的正實根”,再根據(1)中所給出的函數性質即可得出結果;
②可利用分析法進行證明。
(1),令
,
,
在
上有
,
在
上有
,
從而有在
上為單增函數,在
上為單減函數,
,且當
時,
,故函數
的值域為
;
(2)①,
題意有兩個不同極值點即
有兩個不同的正實數根,即
有兩個不同的正實根,
由(1)題函數的性質知:
,故
;
②由條件有兩個不同的極值點
,
知:
,于是有
所以,即
要證成立,只需證明
只需證
只需證
只需證
只需證,令
,
只需證,
,而題中已給出該不等式成立.
即證。
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知直線
的參數方程為
(
為參數),以坐標原點為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
交于
兩點.
(1)求直線l的普通方程和曲線
的直角坐標方程;
(2)已知點的極坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,直線
為平面內的動點,過點
作直線
的垂線,垂足為點
,且
.
(1)求動點的軌跡
的方程;
(2)過點作兩條互相垂直的直線
與
分別交軌跡
于
四點.求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,O為極點,點在曲線
上,直線l過點
且與
垂直,垂足為P.
(1)當時,求
及l的極坐標方程;
(2)當M在C上運動且P在線段OM上時,求P點軌跡的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動圓P過點,且與直線
相切,設動圓圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點F的直線交曲線C于A,B兩個不同的點,過點A,B分別作曲線C的切線,且二者相交于點M,若直線的斜率為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,共享單車已經悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統,以了解用戶對車輛狀況和優惠活動的評價.現從評價系統中選出
條較為詳細的評價信息進行統計,車輛狀況的優惠活動評價的
列聯表如下:
對優惠活動好評 | 對優惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優惠活動好評與車輛狀況好評之間有關系?
(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為
元,
元,
元的 三種騎行券.用戶每次使用
掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得
元券,獲得
元券的概率分別是
,
,且各次獲取騎行券的結果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為
,求隨機變量
的分布列和數學期望.
參考數據:
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班上午有五節課,分別安排語文,數學,英語,物理,化學各一節課.要求語文與化學相鄰,數學與物理不相鄰,且數學課不排第一節,則不同排課法的種數是
A. 24B. 16C. 8D. 12
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年10月,德國爆發出“芳香烴門”事件,即一家權威的檢測機構在德國銷售的奶粉中隨機抽檢了16款(德國4款,法國8款,荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴重危害嬰幼兒的成長,有些奶粉已經遠銷至中國.A地區聞訊后,立即組織相關檢測員對這8款品牌的奶粉進行抽檢,已知該地區有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測員分別負責進行檢測,每人至少抽檢1家商店,且檢測過的商店不重復檢測,則甲檢測員檢測2家商店的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知直線與曲線
相切于兩點,則對于函數
,以下結論成立的是( )
A.有3個極大值點,2個極小值點B.有2個零點
C.有2個極大值點,沒有極小值點D.沒有零點
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com