【題目】兩城市和
相距
,現(xiàn)計(jì)劃在兩城市外以
為直徑的半圓
上選擇一點(diǎn)
建造垃圾處理場,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城
和城
的總影響度為城
和城
的影響度之和,記
點(diǎn)到城
的距離為
,建在
處的垃圾處理場對(duì)城
和城
的總影響度為
,統(tǒng)計(jì)調(diào)查表明:垃圾處理場對(duì)城
的影響度與所選地點(diǎn)到城
的距離的平方成反比,比例系數(shù)為4,對(duì)城
的影響度與所選地點(diǎn)到城
的距離的平方成反比,比例系數(shù)為
,當(dāng)垃圾處理場建在
的中點(diǎn)時(shí),對(duì)城
和城
的總影響度為0.065;
(1)將表示成
的函數(shù);
(2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場對(duì)城
和城
的總影響度最小?若存在,求出該點(diǎn)到城
的距離;若不存在,說明理由;
【答案】(1);
(2)存在,該點(diǎn)到城市A的距離時(shí),總影響度最;
【解析】
(1)根據(jù)“垃圾處理場對(duì)城的影響度與所選地點(diǎn)到城
的距離的平方成反比,比例系數(shù)為4,對(duì)城
的影響度與所選地點(diǎn)到城
的距離的平方成反比,比例系數(shù)為
”,建立函數(shù)模型:
,再根據(jù)當(dāng)
時(shí),
,求得
即可.
(2)總影響度最小,即為:求的最小值時(shí)的狀態(tài),令
,將函數(shù)轉(zhuǎn)化為:
,再用基本不等式求解.
(1)由題意得,
又當(dāng)
時(shí),
,
,
.
(2),
令,則
,
當(dāng)且僅當(dāng),即
時(shí),等號(hào)成立,
弧
上存在一點(diǎn),使建在此處的垃圾處理場對(duì)城
和城
的總影響度最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)使不等式對(duì)任意
,
恒成立時(shí)最大的
記為
,求當(dāng)
時(shí),
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進(jìn)站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個(gè)問題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過4小時(shí)不超過6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過6小時(shí)不超過8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
| ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場停留時(shí)間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計(jì) | |
不超過6小時(shí) | 30 | ||
6小時(shí)以上 | 20 | ||
合計(jì) | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時(shí)”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費(fèi)用,求
的概率分布列及期望
;
(ii)現(xiàn)隨機(jī)抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于
的車輛數(shù),求
的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間
內(nèi)有且只有一個(gè)實(shí)數(shù)
,使得
成立,則稱函數(shù)
在區(qū)間
內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間
內(nèi)是否具有唯一零點(diǎn),說明理由:
(2)已知向量,
,
,證明
在區(qū)間
內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間
內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)列中的所有項(xiàng)按第一行排3項(xiàng),以下每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
……
記表中的第一列數(shù),
,
,…,構(gòu)成數(shù)列
.
(1)設(shè),求m的值;
(2)若,對(duì)于任何
,都有
,且
.求數(shù)列
的通項(xiàng)公式.
(3)對(duì)于(2)中的數(shù)列,若上表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q(
)的等比數(shù)列,且
,求上表中第k(
)行所有項(xiàng)的和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)在
內(nèi)單調(diào)遞增;
(2)記為函數(shù)
的反函數(shù).若關(guān)于
的方程
在
上有解,求
的取值范圍;
(3)若對(duì)于
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面
為矩形,平面
平面
,
,點(diǎn)
,
分別是
,
的中點(diǎn).
(1)求證:平面
;
(2)若與平面
所成角的余弦值等于
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國隊(duì)與韓國隊(duì)相遇,中國隊(duì)男子選手A,B,C,D,E依次出場比賽,在以往對(duì)戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用5局3勝制,先贏3局者獲得勝利.
(1)在決賽中,中國隊(duì)以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義符號(hào)函數(shù),已知
,
.
(1)求關(guān)于
的表達(dá)式,并求
的最小值.
(2)當(dāng)時(shí),函數(shù)
在
上有唯一零點(diǎn),求
的取值范圍.
(3)已知存在,使得
對(duì)任意的
恒成立,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com