【題目】已知圓C:x2+y2﹣2x﹣4y+m=0.
(1)若圓C與直線l:x+2y﹣4=0相交于M、N兩點,且|MN|,求m的值;
(2)在(1)成立的條件下,過點P(2,1)引圓的切線,求切線方程.
科目:高中數學 來源: 題型:
【題目】從10種不同的作物種子中選出6種分別放入6個不同的瓶子中,每瓶不空,如果甲、乙兩種種子都不許放入第一號瓶子內,那么不同的放法共有( )
A.種B.
種C.
種D.
種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
的左、右焦點分別為
、
,
為坐標原點,
是雙曲線在第一象限上的點,直線
交雙曲線
左支于點
,直線
交雙曲線
右支于點
,若
,且
,則雙曲線
的漸近線方程為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線
:
,過點
的直線
的參數方程為:
(
為參數),直線
與曲線
分別交于
、
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)求線段的長和
的積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,若點P(x0,4)在拋物線C上,且.
(1)求拋物線C的方程;
(2)動直線l:x=my+1(mR)與拋物線C相交于A,B兩點,問:在x軸上是否存在定點D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線AD,BD的斜率)若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產同一種產品,,甲車間有工人人,乙車間有工人
人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產完成的一件產品的事件(單位:
)進行統計,按照
進行分組,得到下列統計圖.
分別估算兩個車間工人中,生產一件產品時間少于
的人數
分別估計兩個車間工人生產一件產品時間的平均值,并推測車哪個車間工人的生產效率更高?
從第一組生產時間少于
的工人中隨機抽取
人,記抽取的生產時間少于
的工人人數為隨機變量
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的傾斜角為
,且經過點
.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是圓柱的一條母線,已知BC過底面圓的圓心O,D是圓O上不與點B、C重合的任意一點,
:
(1)求直線AC與平面ABD所成角的大小;
(2)求點B到平面ACD的距離;
(3)將四面體ABCD繞母線AB旋轉一周,求由旋轉而成的封閉幾何體的體積;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:焦點F,過點F且斜率為2的直線與拋物線交于A、B兩點,且
.
(1)求拋物線E的方程;
(2)設O是坐標原點,P,Q是拋物線E上分別位于x軸兩側的兩個動點,且
①證明:直線PQ必過定點,并求出定點G的坐標;
②過G作PQ的垂線交拋物線于C,D兩點,求四邊形PCQD面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com