【題目】為加快新能源汽車產業發展,推進節能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘車補貼標準如下表:
某校研究性學習小組,從汽車市場上隨機選取了輛純電動乘用車,根據其續駛里程
(單次充電后能行駛的最大里程)作出了頻率與頻數的統計表:
(1)求的值;
(2)若從這輛純電動乘用車中任選3輛,求選到的3輛車續駛里程都不低于180公里的概率;
(3)如果以頻率作為概率,若某家庭在某汽車銷售公司購買了2輛純電動乘用車,設該家庭獲得的補貼為(單位:萬元),求
的分布列和數學期望
.
【答案】(I) ,
,
,
(II)
(III)見解析.
【解析】試題分析:(1)由統計圖中第一組的頻數與頻率關系,易求得;(2)
輛中,有
輛車續駛里程不低于
公里,由排列組合與古典概型,可得概率;(3)先列出
的所有可能的取值,再求出各取值所對應的概率,可列出分布列,由分布列可求期望值.
試題解析:
(I)易求,
,
,
(II)
∴從這10輛純電動乘用車中任選3輛,選到的3輛車續駛里程都不低于180公里的概率為
(III)X所有可能的取值為5,6.5,8,8.5,10,12.
其中, ,
,
,
,
,
X | 5 | 6.5 | 8 | 8.5 | 10 | 12 |
P | 0.09 | 0.36 | 0.36 | 0.06 | 0.12 | 0.01 |
∴X的分布列為
X | 5 | 6.5 | 8 | 8.5 | 10 | 12 |
P | 0.09 | 0.36 | 0.36 | 0.06 | 0.12 | 0.01 |
∴E(X)=5×0.09+6.5×0.36+8×0.36+8.5×0.06+10×0.12+12×0.01=7.5
科目:高中數學 來源: 題型:
【題目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于( )
A.{x|x或x>1}
B.{x|x
1}
C.{x|x≤或x
1}
D.{x|≤x≤1}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】服裝廠擬在2017年舉行促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)萬件與年促銷費用
(
)萬元滿足
.已知
年生產該產品的固定投入為
萬元,每生產
萬件該產品需要投入
萬元.廠家將每件產品的銷售價格定為每件產品年平均成本的
倍(產品成本包括固定投入和再投入兩部分資金,不包括促銷費用).
(1)將2017年該產品的利潤萬元表示為年促銷費用
萬元的函數;
(2)該服裝廠2017年的促銷費用投入多少萬元時,利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象經過點(1,3),并且g(x)=xf(x)是偶函數.
(1)求實數a、b的值;
(2)用定義證明:函數g(x)在區間(1,+∞)上是增函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點到準線的距離為
,直線
與拋物線
交于
兩點,過這兩點分別作拋物線
的切線,且這兩條切線相交于點
.
(1)若的坐標為
,求
的值;
(2)設線段的中點為
,點
的坐標為
,過
的直線
與線段
為直徑的圓相切,切點為
,且直線
與拋物線
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題,其中m,n,l為直線,α,β為平面
①mα,nα,m∥β,n∥βα∥β;
②設l是平面α內任意一條直線,且l∥βα∥β;
③若α∥β,mα,nβm∥n;
④若α∥β,mαm∥β.
其中正確的是( )
A.①②
B.②③
C.②④
D.①②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com