某房地產開發公司計劃在一樓區內建造一個長方形公園ABCD,公園由形狀為長方形A1B1C1D1的休閑區和環公園人行道(陰影部分)組成.已知休閑區A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).
(1)若設休閑區的長和寬的比=x(x>1),求公園ABCD所占面積S關于x的函數S(x)的解析式;
(2)要使公園所占面積最小,則休閑區A1B1C1D1的長和寬該如何設計?
科目:高中數學 來源: 題型:解答題
已知定點F(0,1)和直線:y=-1,過定點F與直線
相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F的直線交動點C的軌跡于兩點P、Q,交直線
于點R,求
·
的最小值;
(3)過點F且與垂直的直線
交動點C的軌跡于兩點R、T,問四邊形PRQT的面積是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關系:
(
,
為常數),若不建隔熱層,每年能源消耗費用為8萬元.設
為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及
的表達式;
(2)隔熱層修建多厚時,總費用達到最小?并求最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠建一個長方形無蓋蓄水池,其容積為4800m3,深度為3m。如果池底每1 m2的造價為150元,池壁每1 m2的造價為120元,怎么設計水池能使造價最低?最低造價多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com