日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.拋物線頂點在原點,焦點在y軸上,其上一點P(m,1)到焦點的距離為5,則拋物線的標準方程為x2=16y.

分析 根據題意,由點P的坐標分析可得拋物線開口向上,設其標準方程為x2=2py,由P到焦點的距離為5,結合拋物線的定義可得1-(-$\frac{p}{2}$)=5,解可得p的值,將p的值代入拋物線方程即可得答案.

解答 解:根據題意,P(m,1)在x軸上方,則拋物線開口向上,
設其標準方程為x2=2py,(p>0)
其準線為y=-$\frac{p}{2}$,
P到焦點的距離為5,則有1-(-$\frac{p}{2}$)=5,
解可得p=8,
則拋物線的標準方程為x2=16y,
故答案為:x2=16y.

點評 本題考查拋物線的簡單性質,考查待定系數法的應用,關鍵是分析拋物線的開口方向,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

11.tan23°+tan22°+tan23°tan22°=1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知等比數列{an}各項均為正數,公比為q,滿足an+1<an,a2a8=6,a4+a6=5,則q2=(  )
A.$\frac{5}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知點A,B分別在射線CM,CN(不含端點C)上運動,$∠MCN=\frac{2π}{3}$,在△ABC中,角A,B,C所對的邊分別是a,b,c.
(1)若b是a和c的等差中項,且c-a=4,求c的值;
(2)若$c=\sqrt{3}$,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-m)2=4內切,則m的值為-2或-1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知數列{an}中,a1=1,前n項和為Sn,且點P(an,an+1)在直線y=x+1上,則$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$=(  )
A.$\frac{2n}{n+1}$B.$\frac{2}{n(n+1)}$C.$\frac{n(n+1)}{2}$D.$\frac{n}{2(n+1)}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如果z 1、z 2∈C且z 1$\overline{{z}_{2}}$=$\overline{{z}_{1}}$z 2≠0,則 $\frac{{z}_{1}}{{z}_{2}}$是(  )
A.虛數B.純虛數C.實數D.不確定

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.復數(i-$\frac{1}{i}$)3的虛部是(  )
A.-8B.-8iC.8D.8i

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.用數學歸納法證明1+2+3+4+…++(2n-1)+2n=2n2+n,當n=k+1時左端應在n=k時的基礎上加的項是(  )
A.2k+1B.2k+2C.(2k+1)+(2k+2)D.1

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲在线免费观看 | 欧美在线视频不卡 | 在线观看www | 50人群体交乱视频 | 国产一区二区三区四区五区 | 欧美一级黄色片 | 国内精品久久久久国产 | 午夜精品一区 | 亚洲视频免费在线观看 | 亚洲国产一区二区三区 | 在线观看欧美一区二区三区 | 日本视频一区二区三区 | 久久精品国产欧美 | 操操网| 精品一区二区三区视频 | 成人片在线播放 | 蜜桃视频在线播放 | 国产精品一区一区三区 | 欧美中文字幕在线 | 青青草网| 午夜精品一区二区三区免费视频 | 国产欧美一区二区精品忘忧草 | 久久久99精品免费观看 | h视频免费在线 | 亚洲欧美高清 | 黄网站涩免费蜜桃网站 | 中文字幕一区二区三区不卡 | 亚洲精品无 | 国产中文字幕在线 | 午夜激情视频在线 | 婷婷久久综合 | 国产美女在线精品免费 | 密臀av| 91色在线观看 | 日本免费看 | 另类一区 | 亚洲一二三 | 亚洲午夜视频在线观看 | 中文字幕在线免费 | 免费成人在线网站 | 国产精品久久久久久一区二区三区 |