日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.在平面直角坐標系xoy中,圓C的參數方程為$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t為參數),在以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,A,B兩點的極坐標為$({1,\frac{π}{2}}),({1,π})$.
(1)求圓C的普通方程和直線L的直角坐標方程;
(2)點P是圓C上任意一點,求△PAB面積的最大值.

分析 (1)利用同角三角函數關系式,消去t可得圓C的普通方程,利用余弦的兩角和與差打開,x=ρcosθ,y=ρsinθ可得直線L的直角坐標方程;
(2)將A,B兩點的極坐標化為直角坐標.求出AB的距離,利用參數坐標設出點P.可得△PAB面積的關系式,求最大值即可.

解答 解:(1)圓C的參數方程為$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t為參數),可得:$\left\{\begin{array}{l}{x-1=\sqrt{2}cost}\\{1+y=\sqrt{2}sint}\end{array}\right.$,得$\left\{\begin{array}{l}{(x-1)^{2}=2co{s}^{2}t}\\{(y+1)^{2}=2si{n}^{2}t}\end{array}\right.$
可得:(x-1)2+(y+1)2=2,
即圓C的普通方程為:(x-1)2+(y+1)2=2,
直線l的極坐標方程為$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,
可得:$ρcosθ×cos\frac{π}{4}-ρsinθ×sin\frac{π}{4}=-\frac{\sqrt{2}}{2}$,得$\frac{\sqrt{2}}{2}ρcosθ-\frac{\sqrt{2}}{2}ρsinθ+\frac{\sqrt{2}}{2}=0$
由x=ρcosθ,y=ρsinθ,可得:x-y+1=0.
∴直線L的直角坐標方程為x-y+1=0.
(2)A,B兩點的極坐標為$({1,\frac{π}{2}}),({1,π})$.
化簡直角坐標為A(0,1),B(-1,0),可得A,B在直線直線l上.|AB|=$\sqrt{2}$.
點P是圓C上,設P(1$+\sqrt{2}cost$,$-1+\sqrt{2}sint$),
則P到直線l的距離d=$\frac{|1+\sqrt{2}cost+1-\sqrt{2}sint+1|}{\sqrt{2}}=\frac{|3+2cos(t+\frac{π}{4})|}{\sqrt{2}}$
∴$p9vv5xb5_{max}=\frac{5}{\sqrt{2}}=\frac{5\sqrt{2}}{2}$.
∴△PAB面積的最大值為:$S=\frac{1}{2}|AB|×p9vv5xb5_{max}=\frac{1}{2}×\sqrt{2}×\frac{5\sqrt{2}}{2}=\frac{5}{2}$.

點評 本題考查了參數方程化為普通方程,極坐標化為直角坐標的問題.點到直線的距離公式求最值問題.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△ADP是等腰直角三角形,∠APD是直角,AB⊥AD,AB=1,$AD=2,AC=CD=\sqrt{5}$.
(Ⅰ)求直線PB與平面PCD所成角的正弦值;
(Ⅱ)求平面PCD與平面PAB所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.對于任意集合X與Y,定義:①X-Y={x|x∈X且x∉Y},②X△Y=(X-Y)∪(Y-X),(X△Y稱為X與Y的對稱差).已知A={y|y=2x-1,x∈R},B={x|x2-9≤0},則A△B=[-3,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.已知點A(-1,2),B(1,3),則向量$\overrightarrow{AB}$的坐標為(2,1).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知a>0且a≠1,函數f(x)=4+loga(x+4)的圖象恒過定點P,若角α的終邊經過點P,則cosα的值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.設函數f(x)是定義在R上的奇函數,則下列結論中一定正確的是(  )
A.函數f(x)+x2是奇函數B.函數f(x)+|x|是偶函數
C.函數x2f(x)是奇函數D.函數|x|f(x)是偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.某投資公司準備在2016年年底將1000萬元投資到某“低碳”項目上,據市場調研,該項目的年投資回報率為20%.該投資公司計劃長期投資(每一年的利潤和本金繼續用作投資),若市場預期不變,大約在2020年的年底總資產(利潤+本金)可以翻一番.(參考數據:lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側面PBC是直角三角形,∠PCB=90°,點E是PC的中點,且平面PBC⊥平面ABCD.
求證:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.某單位生產A、B兩種產品,需要資金和場地,生產每噸A種產品和生產每噸B種產品所需資金和場地的數據如表所示:
資源
產品
資金(萬元)場地(平方米)
A2100
B3550
現有資金12萬元,場地400平方米,生產每噸A種產品可獲利潤3萬元;生產每噸B種產品可獲利潤2萬元,分別用x,y表示計劃生產A、B兩種產品的噸數.
(1)用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區域;
(2)問A、B兩種產品應各生產多少噸,才能產生最大的利潤?并求出此最大利潤.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成人午夜片在线观看高清观看 | 亚洲欧美中文日韩v在线观看 | 欧美成人在线影院 | 中文字幕亚洲一区二区三区 | 久久久久毛片 | 日韩视频一区二区 | 91视频网址 | 91一区| www.狠狠干 | 亚洲一区 中文字幕 | 日日摸日日碰夜夜爽亚洲精品蜜乳 | 一区二区免费在线播放 | 国精产品一区一区三区免费完 | wwwxxxx日本 | 精品国产乱码久久久久久1区2区 | 97人人爽人人澡人人精品 | 日韩在线一区二区 | aaa久久 | 国产精品日本一区二区不卡视频 | 免费xxxxx在线观看网站软件 | 免费一级欧美在线观看视频 | 亚洲综合色视频在线观看 | 91精品久久久久久久 | 一区二区在线观看视频 | 四虎在线视频 | 91国内产香蕉 | 超碰男人 | 青草精品| 日日干天天操 | 日韩国产在线 | 日日骚av | 91观看| 中文字幕乱码一区二区三区 | 草逼视频免费观看 | 国产亚洲精品美女久久久久久久久久 | 国产成人涩涩涩视频在线观看 | 久热精品视频 | 久久精品亚洲a | 国产一区二区三区久久久久久久 | 成人三级视频 | 欧美一区二区免费 |