A. | $-\frac{16}{3}$ | B. | $\frac{16}{3}$ | C. | -6 | D. | 6 |
分析 由目標函數z=x+3y的最大值為8,我們可以畫出滿足條件$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{2x+y+k≤0}\end{array}\right.$的平面區域,根據目標函數的解析式形式,分析取得最優解的點的坐標,然后根據分析列出一個含參數k的方程組,消參后即可得到k的取值.
解答 解:畫出x,y滿足的可行域如下圖:z=3x+y的最大值為8,
由$\left\{\begin{array}{l}{3x+y=8}\\{y=0}\end{array}\right.$,解得y=0,x=$\frac{8}{3}$,
($\frac{8}{3}$,0)代入2x+y+k=0,∴k=-$\frac{16}{3}$,
故選B.
點評 如果約束條件中含有參數,可以先畫出不含參數的幾個不等式對應的平面區域,分析取得最優解是哪兩條直線的交點,然后得到一個含有參數的方程(組),代入另一條直線方程,消去x,y后,即可求出參數的值.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-3)∪[$\frac{5}{2}$,+∞) | B. | (-3,-2]∪[0,$\frac{5}{2}$) | C. | (-∞,-3]∪[$\frac{5}{2}$,+∞) | D. | (-3,-2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{3}$ | C. | 8 | D. | $8\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2n-1 | B. | -3n+2 | C. | (-1)n+1(3n-2) | D. | (-1)n+13n-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | -7 | D. | 7 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com