日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=BC,AB=AC=B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大小.

【答案】分析:(Ⅰ)證明AB⊥AC,AB⊥QC,利用線面垂直的判定可得AB⊥平面ACQ;
(Ⅱ)設(shè)線段BC的中點(diǎn)是O,連接OP,OA,設(shè)PO′⊥平面ACQ于O′,則∠PAO′是AP與平面ACQ所成的角,∠PAO′與∠BAP互余,求得∠BAP=60°,即可得到結(jié)論.
解答:(Ⅰ)證明:∵∠BAC=90°,∴AB⊥AC
∵側(cè)面ABC⊥底面BCQP且∠BCQ=90°,∴QC⊥平面ABC
∵AB?平面ABC
∴AB⊥QC
∵AC∩QC=C
∴AB⊥平面ACQ;
(Ⅱ)解:設(shè)線段BC的中點(diǎn)是O,連接OP,OA
設(shè)PO′⊥平面ACQ于O′,則∠PAO′是AP與平面ACQ所成的角
由(Ⅰ)知AB⊥平面ACQ,AB∥PO′,∠PAO′與∠BAP互余
∵AB=AC=,∠BAC=90°,∴BC=2,AO⊥BC,∴AO⊥平面BCQP
設(shè)BP=x,∵BP+AP=BC,∴AP=2-x,AO=BO=1,OP2=(2-x)2-1
在△OPB中,由余弦定理得OP2=OB2+BP2-2OB×BPcos45°,∴x=
∴△ABP為等邊三角形
∴∠BAP=60°
∴∠PAO′=30°,即直線AP與平面ACQ所成角為30°.
點(diǎn)評(píng):本題考查線面垂直,考查線面角,解題的關(guān)鍵是掌握線面垂直的判定,正確作出線面角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=
2
BC,AB=AC=
2
B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(14分)如圖,在四棱錐中,,

,BC⊥AB,CD⊥AD,BC=CD=PA=a,

              (Ⅰ)求證:平面PBD⊥平面PAC.

(Ⅱ)求四棱錐P-ABCD的體積V;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(14分)如圖,在四棱錐中,,

,BC⊥AB,CD⊥AD,BC=CD=PA=a,

              (Ⅰ)求證:平面PBD⊥平面PAC.

(Ⅱ)求四棱錐P-ABCD的體積V;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣西南寧市高三第三次適應(yīng)性測試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=BC,AB=AC=B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 免费在线中文字幕 | 91在线 | 亚洲 | 毛片免费在线观看 | 国产精品久久国产精品 | 国产欧美日韩综合 | 亚洲国产欧美一区二区三区久久 | 欧美美女爱爱视频 | 久久精彩视频 | 日本午夜电影 | 欧美精品免费在线 | 欧美一区二区三区在线视频 | 欧美一区2区三区4区公司贰佰 | 国产成人精品一区二区三区视频 | 免费视频一区 | 久久精品一级 | 色爱区综合五月激情 | 久久高清 | 久久国产精品免费一区二区三区 | 日韩精品久久久免费观看夜色 | 99久久免费精品国产男女性高好 | 亚洲在线 | 国产福利一区二区三区在线观看 | 黄色永久网站 | 国产成人精品999在线观看 | 国产精品久久久久久久久久 | 精品中文久久 | 欧美一区二区三区在线观看视频 | 国产精品欧美一区二区三区不卡 | 精品国产一区二区三区免费 | 成人久久久久 | 日本二区在线观看 | 亚洲国产成人av好男人在线观看 | 成人片免费看 | 久久久久久一区 | 国产无区一区二区三麻豆 | 欧美成人精品一区 | 日韩国产欧美视频 | 一区二区视频 | 青青草国产成人av片免费 | 国产精品二区三区 | 亚洲日本精品视频 |