分析 由g(x)=x-1≥0時,x≥1,根據題意有f(x)=m(x-2m)(x+m+3)<0在x>1時成立,根據二次函數的性質可求.
解答 解:∵g(x)=x-1,∴當x<1時,g(x)<0,
又∵?x∈R,f(x)<0或g(x)<0成立,
∴f(x)=m(x-2m)(x+m+3)<0在x≥1時恒成立
則由二次函數的性質可知開口只能向下,且二次函數與x軸交點都在(1,0)的左面,
∴$\left\{\begin{array}{l}{m<0}\\{-m-3<1}\\{2m<1}\end{array}\right.$,解得-4<m<0,
∴m的取值范圍為(-4,0).
故答案為:(-4,0).
點評 本題主要考查了全稱命題與特稱命題的成立,指數函數與二次函數性質的應用是解答本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-$\frac{25}{12}$] | C. | (-∞,50] | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com