分析 (1)由函數的圖象的頂點坐標求出A,由周期求出ω,由特殊點的坐標出φ的值,可得函數的解析式.
(2)利用正弦函數的單調性求得函數f(x)的單調減區間.
(3)由題意利用正弦函數的圖象,求得m的范圍.
解答 (1)由題意,$A=2,T=2({\frac{7π}{12}-\frac{π}{12}})=π,ω=\frac{2π}{T}=2$,
由$2×\frac{π}{12}+α=\frac{π}{2}+2kπ,k∈Z$,得$α=\frac{π}{3}+2kπ,k∈Z$.
又因為-π<α<π,∴$α=\frac{π}{3}$,所以$f(x)=2sin(2x+\frac{π}{3})$.
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{3π}{2}+2kπ,k∈Z$,得$\frac{π}{6}+2kπ≤2x≤\frac{7π}{6}+2kπ,k∈Z$,則$\frac{π}{12}+kπ≤x≤\frac{7π}{12}+kπ,k∈Z$,
∴函數f(x)的單調遞減區間為$[{\frac{π}{12}+kπ,\frac{7π}{12}+kπ}]$.
(3)由題意知,方程$sin(2x+\frac{π}{3})=\frac{m-1}{4}$在$[{-\frac{π}{3},\frac{π}{6}}]$上有兩個根,
∵$x∈[{-\frac{π}{3},\frac{π}{6}}]$,∴$2x+\frac{π}{3}∈[{-\frac{π}{3},\frac{2π}{3}}]$,
∴$\frac{m-1}{4}∈[{\frac{{\sqrt{3}}}{2},1})$,∴$m∈[{2\sqrt{3}+1,5})$.
點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由周期求出ω,由特殊點的坐標出φ的值;還考查了正弦函數的單調性、正弦函數的圖象,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{6}{5}$ | B. | $\frac{12}{5}$ | C. | 1 | D. | $-\frac{2}{5}$或$\frac{12}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{13}{15}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2\sqrt{6}}{3}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com