分析 (1)根據正弦函數的周期公式T=$\frac{2π}{|ω|}$,可求函數f(x)的最小正周期,根據正弦函數的增區間求得函數$f(x)=\sqrt{2}sin(2x+\frac{π}{4})+2$的單調遞增區間;
(2)根據正弦函數的定義域和值域,求得函數f(x)的最值.
解答 解:(1)由題意得:$T=\frac{2π}{|ω|}=\frac{2π}{2}=π$,即周期為π.
令$μ=2x+\frac{π}{4}$,則$f(μ)=\sqrt{2}sinμ+2$.
∴$-\frac{π}{2}+2kπ≤μ≤\frac{π}{2}+2kπ$,即$-\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤\frac{π}{2}+2kπ$,k∈Z
解之得:$-\frac{3π}{8}+kπ≤x≤\frac{π}{8}+kπ$,k∈Z
故函數$f(x)=\sqrt{2}sin(2x+\frac{π}{4})+2$的單調遞增區間為$[-\frac{3π}{8}+kπ,\frac{π}{8}+kπ](k∈Z)$;
(2)由$x∈[0,\frac{π}{2}]$得$2x+\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$,
∴$sin(2x+\frac{π}{4})∈[-\frac{{\sqrt{2}}}{2},1]$
∴$f(x)∈[1,2+\sqrt{2}]$即f(x)在區間$[0,\frac{π}{2}]$上的最大值為$2+\sqrt{2}$,最小值為1.
點評 本題主要考查正弦函數的周期性、單調性、定義域和值域,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-1] | B. | (-∞,1] | C. | [-1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com