【題目】如圖,在五面體中,四邊形
是正方形,
,
,
.
(1)求證:;
(2)求直線與平面
所成角的正弦值.
【答案】(1)見解析(2)
【解析】
(1)根據(jù)已知可證,可得四邊形
為等腰梯形,進(jìn)而證明
,再由已知可證
平面
,從而有
,可得
平面
,即可證明結(jié)論;
(1)以為原點建立空間直角坐標(biāo)系(如下圖所示),確定
坐標(biāo),求出平面
的法向量坐標(biāo),根據(jù)空間向量線面角公式,即可求解.
(1)證明:由已知,且
平面
,
平面
,所以
平面
.
又平面平面
,故
.
又,
所以四邊形為等腰梯形,
因為,所以
,
因為,所以
,
所以,所以
.
因為,
,且
,
所以平面
.所以
.
又,∴
平面
,
又平面
,所以
.
(2)如圖,以為原點,且
,
,
分別為
,
,
軸,
建立空間直角坐標(biāo)系.
則,
,
,
,
∴,
,
,
設(shè)平面的法向量為
,
由,得
,
令,得
.
設(shè)直線與平面所成的角為
,
,
所以直線與平面
所成角的正弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的右頂點為
,離心率為
,點
在橢圓上,點
與點
關(guān)于原點對稱.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求經(jīng)過點,
且和
軸相切的圓的方程;
(3)若,
是橢圓上異于
,
的兩個點,且
,點
在直線
的上方,試判斷
的平分線是否經(jīng)過
軸上的一個定點?若是,求出該定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在
上的單調(diào)性;
(2)若,當(dāng)
時,
,且
有唯一零點,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,
,則下面結(jié)論正確的是( )
A.把上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
B.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
C.把上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線
D.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在
上的偶函數(shù),其圖象關(guān)于點
對稱.以下關(guān)于
的結(jié)論:①
是周期函數(shù);②
滿足
;③
在
單調(diào)遞減;④
是滿足條件的一個函數(shù).其中正確結(jié)論的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以原點
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的直角坐標(biāo)方程;
(2)若直線與
相切于第二象限的點
,與
交于
,
兩點,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為圓
的直徑,點
,
在圓
上,
,矩形
和圓
所在的平面互相垂直,已知
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求直線與平面
所成角的大小;
(Ⅲ)當(dāng)的長為何值時,二面角
的大小為
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com