日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

6.(Ⅰ)已知a>0,求證:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2
(Ⅱ) 已知p,q,r都是正數(shù),求證:關(guān)于x的三個(gè)方程8x2-8$\sqrt{p}$x+q=0,8x2-8$\sqrt{q}$x+r=0,8x2-8$\sqrt{r}$x+p=0至少有一個(gè)方程有兩個(gè)不相等的實(shí)根.

分析 (I)使用分析法證明;
(II)使用反證法證明.

解答 證明:(Ⅰ)要證:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2,
  只需證:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$+2≥a+$\frac{1}{a}$+$\sqrt{2}$
只需證:a2+$\frac{1}{{a}^{2}}$+4+4$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$≥a2+$\frac{1}{{a}^{2}}$+2+2+2$\sqrt{2}$(a+$\frac{1}{a}$),
即證:2$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$≥$\sqrt{2}$(a+$\frac{1}{a}$),
只需證:4(a2+$\frac{1}{{a}^{2}}$)≥2(a2+$\frac{1}{{a}^{2}}$+2),
即證:a2+$\frac{1}{{a}^{2}}$≥2,
而上式顯然成立,
原不等式成立.
(Ⅱ)假設(shè)三個(gè)方程均無(wú)不相等的實(shí)根,則$\left\{\begin{array}{l}{2p-q≤0}\\{2q-r≤0}\\{2r-p≤0}\end{array}\right.$,
∴p+q+r≤0,與p,q,r都是正數(shù)矛盾.
∴故三個(gè)方程中至少有一個(gè)方程有兩個(gè)不相等的實(shí)根.

點(diǎn)評(píng) 本題考查了分析法與反證法證明不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,已知一個(gè)八面體各棱長(zhǎng)均為1,四邊形ABCD為正方形,則下列命題中不正確的是(  )
A.不平行的兩條棱所在直線所成的角為60°或90°
B.四邊形AECF為正方形
C.點(diǎn)A到平面BCE的距離為$\frac{{\sqrt{6}}}{4}$
D.該八面體的頂點(diǎn)在同一個(gè)球面上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知圓C的極坐標(biāo)方程為ρ=4cosθ-2sinθ,圓心為C點(diǎn)A($\sqrt{2}$,$\frac{π}{4}$),則線段AC的長(zhǎng)為(  )
A.$\sqrt{5}$B.5C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=cosxsinx
(Ⅰ)若角α終邊上的一點(diǎn)Q與定點(diǎn)P(3,-4)關(guān)于直線y=x對(duì)稱,求f(α)的值;
(Ⅱ)若$f(α)=\frac{1}{2}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)$y=tan(2x-\frac{π}{4})$的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(-2,0)時(shí),f(x)=2x2,則f(2017)等于(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求函數(shù)y=cos2x+asinx+$\frac{5}{8}$a+1(0≤x≤$\frac{π}{2}$)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若α∈(0,2π),則符合不等式sinα>cosα的α取值范圍是(  )
A.($\frac{π}{4}$,$\frac{5π}{4}$)B.($\frac{π}{2}$,π)C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{4}$,$\frac{π}{2}$)∪(π,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.2017年某市街頭開(kāi)始興起“mobike”、“ofo”等共享單車(chē),這樣的共享單車(chē)為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問(wèn)題,比如亂停亂放,或?qū)⒐蚕韱诬?chē)占為“私有”等.為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車(chē)隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車(chē)的人數(shù)統(tǒng)計(jì)如下表:
年齡[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受訪人數(shù)56159105
支持發(fā)展共享單車(chē)人數(shù)4512973
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車(chē)有關(guān)系:
年齡低于35歲年齡不低于35歲合計(jì)
支持
不支持
合計(jì)
(Ⅱ)若對(duì)年齡在[15,20)的被調(diào)查人中隨機(jī)選取兩人,對(duì)年齡在[20,25)的被調(diào)查人中隨機(jī)選取一人進(jìn)行調(diào)查,求選中的3人中支持發(fā)展共享單車(chē)的人數(shù)為2人的概率.
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: www.亚洲 | 国产日韩精品一区二区 | 一区二区三区四区精品 | 午夜国产一级 | 色天天综合 | 亚洲欧洲一区二区三区 | 国产天堂一区二区 | 久久国产一区二区三区 | 午夜精品视频在线观看 | 超碰在 | 日韩精品一二区 | 一区不卡 | 日韩免费精品 | 欧美激情视频免费观看 | 欧美一级免费大片 | 欧美精品一区二区三区一线天视频 | 久久精品小视频 | 国产精品第一国产精品 | 国产精品国产精品国产专区不片 | 国产精品久久久久久中文字 | 一区二区三区免费看 | 天天干狠狠操 | 毛片大全 | 久久久网 | 久久性| 国产精品二区三区 | 成av人在线| 成人精品在线视频 | 亚洲国产欧美一区二区三区久久 | 97在线免费观看 | 国产一区二区三区免费 | 国产一二三在线 | 久久精品国产亚洲一区二区三区 | 久久精精品 | 国产一区二区精品 | 干干射 | 一区二区中文字幕 | 永久黄网站色视频免费观看w | 国产高清视频一区二区 | 久久99深爱久久99精品 | 精品视频久久 |