分析 由三角函數公式化簡可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$.結合正弦函數圖象的性質來求其單調減區間.
解答 解:f(x)=sinxcosx+cos2x
=$\frac{1}{2}$sin2x+$\frac{1}{2}$(1+cos2x)
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$.
所以2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z.
所以函數f(x)=sinxcosx+cos2x的減區間是kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z.
故答案是:$[{kπ+\frac{π}{8},kπ+\frac{5π}{8}}],k∈Z$.
點評 本題考查二倍角公式,涉及三角函數的單調性,屬基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-1,1} | B. | {-1,0,1} | C. | {1} | D. | {0,1} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com