如圖,F(xiàn)是中心在原點、焦點在x軸上的橢圓C的右焦點,直線l:x=4是橢圓C的右準線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
(1);(2)P(
,±
).
解析試題分析:(1)求橢圓標準方程,一般利用待定系數(shù)法,利用兩個獨立條件確定a,b的值. 設(shè)橢圓C的方程為,由已知,得
,∴
∴b=
.所以橢圓C的方程為
.(2)等腰三角形這個條件,是不確定的,首先需要確定腰. 由
=e=
,得PF=
PM.∴PF≠PM.若PF=FM,則PF+FM=PM,與“三角形兩邊之和大于第三邊”矛盾,∴PF不可能與FM相等.因此只有FM=PM,然后結(jié)合點在橢圓上條件進行列方程求解:設(shè)P(x,y)(x≠±2),則M(4,y).∴
=4-x,
∴9+y2=16-8x+x2,又由,得y2=3-
x2.∴9+3-
x2=16-8x+x2,∴
x2-8x+4=0.∴7x2-32x+16=0.∴x=
或x=4.∵x∈(-2,2),∴x=
.∴P(
,±
).綜上,存在點P(
,±
),使得△PFM為等腰三角形.
試題解析:解:(1)設(shè)橢圓C的方程為
由已知,得,∴
,∴b=
.所以橢圓C的方程為
(2)由=e=
,得PF=
PM.∴PF≠PM.
①若PF=FM,則PF+FM=PM,與“三角形兩邊之和大于第三邊”矛盾,
∴PF不可能與FM 相等.
②若FM=PM,設(shè)P(x,y)(x≠±2),則M(4,y).∴=4-x,
∴9+y2=16-8x+x2,又由,得y2=3-
x2.∴9+3-
x2=16-8x+x2,
∴x2-8x+4=0.∴7x2-32x+16=0.∴x=
或x=4.∵x∈(-2,2),∴x=
.
∴P(,±
).綜上,存在點P(
,±
),使得△PFM為等腰三角形.
考點:橢圓方程,橢圓第二定義
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:的離心率
,右焦點到直線
1的距離
,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A、B兩點,證明點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:
有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求
的最大值及取得最大值時m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓經(jīng)過橢圓
的右焦點
和上頂點
.
(1)求橢圓的方程;
(2)過原點的射線
與橢圓
在第一象限的交點為
,與圓
的交點為
,
為
的中點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的短軸長為
,且斜率為
的直線
過橢圓
的焦點及點
.
(1)求橢圓的方程;
(2)已知直線過橢圓
的左焦點
,交橢圓于點P、Q.
(ⅰ)若滿足(
為坐標原點),求
的面積;
(ⅱ)若直線與兩坐標軸都不垂直,點
在
軸上,且使
為
的一條角平分線,則稱點
為橢圓
的“特征點”,求橢圓
的特征點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線-y2=1的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.求直線A1P與A2Q交點的軌跡E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點在坐標原點,焦點在x軸正半軸的拋物線上有一點A(,m),A點到拋物線焦點的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個定點,過M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過定點(x0+2,-y0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知橢圓C1與雙曲線C2有相同的焦點F1、F2,點P是C1與C2的一個公共點,是一個以PF1為底的等腰三角形,
C1的離心率為
則C2的離心率
為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)O為原點,若點A在直線,點B在橢圓C上,且
,求線段AB長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com