【題目】將某公司200天的日銷售收入(單位:萬元)統計如下表(1)所示,
日銷售收入 | ||||||
頻數 | 12 | 28 | 36 | 54 | 50 | 20 |
頻率 |
表(1)
(1)完成上述頻率分布表,并估計公司這200天的日均銷售收入(同一組中的數據用該組所在區間的中點值代表);
(2)已知該公司2020年第一、二季度的日銷售收入如下表(2)所示,第三季度的日銷售收入及其頻率可用表(1)中的數據近似代替,且在2020年,當公司日銷售收入為時,員工的日績效為100元,當公司日銷售收入為
時,員工的日績效為200元,當公司日銷售收入為
時,員工的日績效為300元.以頻率估計概率.
①若在第三季度某員工的工作日中隨機抽取2天,記該員工2天的績效之和為,求
的分布列以及數學期望;
②若每個員工每個季度的工作日為50天,估計2020年前三個季度每個員工獲得的績效的總額.
日銷售收入 | ||||||
頻率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)
【答案】(1)填表見解析;(萬元);(2)①分布列見解析;期望為380元;②
元.
【解析】
(1) 統計了200天的日銷售收入,用每組的頻數除以200得到各組的頻率.
(2) ①若在第三季度某員工的工作日中隨機抽取2天,記該員工2天的績效之和為,則
的可能取值為200,300,400,500,600,再分別計算其概率即可得分布列以及數學期望.
②以頻率估計概率.,日銷售收入為時,員工的日績效為100元,對應概率為
,日銷售收入為
時,員工的日績效為200元,對應概率為
,日銷售收入為
時,員工的日績效為300元. 對應概率為
可得第一、二季度的個人績效;第三季度的日銷售收入及其頻率可用表(1)中的數據近似代替,即日銷售收入為時,員工的日績效為100元,對應概率為
,日銷售收入為
時,員工的日績效為200元,對應概率為
,日銷售收入為
時,員工的日績效為300元. 對應概率為
,由此可得前三個季度每個員工獲得的績效的總額.
解:(1)完善表格如下所示:
日銷售收入 | ||||||
頻數 | 12 | 28 | 36 | 54 | 50 | 20 |
頻率 | 0.06 | 0.14 | 0.18 | 0.27 | 0.25 | 0.12 |
故日均銷售收入為(萬元).
(2)①依題意,的可能取值為200,300,400,500,600,
故,
,
,
,
,
故的分布列為:
200 | 300 | 400 | 500 | 600 | |
0.04 | 0.28 | 0.53 | 0.14 | 0.01 |
故.
②第一、二季度的個人績效情況如下:
日銷售收入 | 100 | 200 | 300 |
概率 | 0.5 | 0.4 | 0.1 |
第三季度的個人績效情況如下:
日銷售收入 | 100 | 200 | 300 |
概率 | 0.2 | 0.7 | 0.1 |
每個員工2020年前三個季度獲得的績效總額為
.
科目:高中數學 來源: 題型:
【題目】騰飛中學學生積極參加科技創新大賽,在市級組織的大賽中屢創佳績.為了組織學生參加下一屆市級大賽,了解學生報名參加社會科學類比賽(以下稱為A類比賽)和自然科學類比賽(以下稱為B類比賽)的意向,校團委隨機調查了60名男生和40名女生調查結果如下:60名男生中,15名不準備參加比賽,5名準備參加A類比賽和B類比賽,剩余的男生有準備參加A類比賽,
準備參加B類比賽,40名女生中,10名不準備參加比賽,25名準備參加A類比賽,5名準備參加B類比賽.
(1)根據統計數據,完成如2×2列聯表(A類比賽和B類比賽都參加的學生需重復統計):
A類比賽 | B類比賽 | 總計 | |
男生 | |||
女生 | |||
總計 |
(2)能否有99%的把握認為學生參加A類比賽或B類比賽與性別有關?
附:K2.
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新冠疫情發生后,酒精使用量大增,某生產企業調整設備,全力生產與
兩種不同濃度的酒精,按照計劃可知在一個月內,酒精日產量
(單位:噸)與時間n(
且
)成等差數列,且
,
.又知
酒精日產量所占比重
與時間n成等比數列,
酒精日產量所占比重與時間n的關系如下表(
):
| …… | |||
時間n | 1 | 2 | 3 | …… |
(1)求,
的通項公式;
(2)若,求前n天
(單位:噸,
且
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學名著,它在幾何學中的研究比西方早1000多年,在《九章算術》中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,
.
(1)求證:四棱錐為陽馬;
(2)若,當鱉膈
體積最大時,求銳二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自新冠肺炎疫情發生以來,某社區積極防范,并利用網絡對本社區居民進行新冠肺炎防御知識講座,為了解該社區居民對防御知識的掌握情況,隨機調查了該社區100人,統計得到如下列聯表:
(1)請根據2x2列聯表,判斷是否有95%的把握認為防御知識掌握情況與年齡有關;
(2)為了進一步提高該社區的防御意識,該社區采用分層抽樣的方法,從調查的完全掌握的居民中抽取10人,再從這10人中隨機選取2人作為下一次講座的講解員,設X為這2人中年齡小于或等于50歲的人數,求的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們打印用的A4紙的長與寬的比約為,之所以是這個比值,是因為把紙張對折,得到的新紙的長與寬之比仍約為
,紙張的形狀不變.已知圓柱的母線長小于底面圓的直徑長(如圖所示),它的軸截面ABCD為一張A4紙,若點E為上底面圓上弧AB的中點,則異面直線DE與AB所成的角約為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為
,且過點A(2,1).
(1)求C的方程:
(2)點M,N在C上,且AM⊥AN,AD⊥MN,D為垂足.證明:存在定點Q,使得|DQ|為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com