【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康。經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加。為了更好的制定2019年關于加快提升農民年收人力爭早日脫貧的工作計劃,該地扶貧辦統計了2018年位農民的年收人并制成如下頻率分布直方圖:
(1)根據頻率分布直方圖,估計位農民的年平均收入
(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入服從正態分布
,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
.利用該正態分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區約有占總農民人數的的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了位農民。若每個農民的年收人相互獨立,問:這
位農民中的年收入不少于
千元的人數最有可能是多少?
附:參考數據與公式
則①;②
;③
.
【答案】(1)17.40千元 (2)(i)千元(ii)978
【解析】
(1)取出每一組數據中間值,充當,利用公式
進行求解即可
(2)根據正態分布特征值,結合附表所給內容,可判斷,再計算出對應的
值即可
(3)由題中位農民中的年收入不少于
千元,即
,記
個農民的年收入不少于
千元的人數為
,則
,再根據二項分布的概率公式,結合“精準扶貧,不落一人”的特點來進行判斷即可
解:千元.
由題意,
.
(i)時,滿足題意即最低年收入大約為
千元
(ii)由,得
每個農民的年收入不少于千元的事件概率為
,
記個農民的年收入不少于
千元的人數為
,則
,其中
,
于是恰好有個農民的年收入不少于
千元的事件概率是
從而由,得
而,所以,當
時,
當時,
由此可知,在所走訪的位農民中,年收入不少于
千元的人數最有可能是
科目:高中數學 來源: 題型:
【題目】(本題滿分16分)已知,
,
都是各項不為零的數列,且滿足
,
,其中
是數列
的前
項和,
是公差為
的等差數列.
(1)若數列是常數列,
,
,求數列
的通項公式;
(2)若(
是不為零的常數),求證:數列
是等差數列;
(3)若(
為常數,
),
,求證:對任意的
,數列
單調遞減.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現象不斷的發生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:
(1)逐份檢驗,則需要檢驗n次;
(2)混合檢驗,將其中k(且
)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為
次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p(
).
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現取其中k(且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(i)試運用概率統計的知識,若,試求p關于k的函數關系式
;
(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.
參考數據:,
,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面四邊形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面積為2.
(1)求AD的長;
(2)求△CBD的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,射線
的方程為
,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的方程為
.一只小蟲從點
沿射線
向上以
單位/min的速度爬行
(1)以小蟲爬行時間為參數,寫出射線
的參數方程;
(2)求小蟲在曲線內部逗留的時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了了解籃球運動是否與性別相關,在高一新生中隨機調查了40名男生和40名女生,調查的結果如下表:
喜歡 | 不喜歡 | 總計 | |
女生 | 8 | ||
男生 | 20 | ||
總計 |
(1)根據題意完成上面的列聯表,并用獨立性檢驗的方法分析,能否在犯錯的概率不超過0.01的前提下認為喜歡籃球運動與性別有關?
(2)從女生中按喜歡籃球運動與否,用分層抽樣的方法抽取5人做進一步調查,從這5人中任選2人,求2人都喜歡籃球運動的概率.
附:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中:①若“”是“
”的充要條件;
②若“,
”,則實數
的取值范圍是
;
③已知平面、
、
,直線
、
,若
,
,
,
,則
;
④函數的所有零點存在區間是
.
其中正確的個數是( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com