如圖1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2。
(1)求證:BC⊥平面A1DC;
(2)若CD=2,求BE與平面A1BC所成角的正弦值。
(1)詳見解析;(2)
解析試題分析:(1)可以利用線線BC,
垂直,來證明線面BC⊥平面A1DC垂直;
(2)可以以D為原點,分別以為x,y,z軸的正方向,建立空間直角坐標系,然后利用空間向量的線面角公式
即可.
試題解析:(Ⅰ)DE
,DE//BC,
BC
2分
又,AD
4分
(2)以D為原點,分別以為x,y,z軸的正方向,
建立空間直角坐標系D-xyz 5分
說明:建系方法不唯一 ,不管左手系、右手系只要合理即可
在直角梯形CDEB中,過E作EFBC,EF=2,BF=1,BC=3 6分
B(3,0,-2)E(2,0,0)C(0,0,-2)A1(0,4,0) 8分
9分
設平面A1BC的法向量為
令y=1,
10分
設BE與平面A1BC所成角為,
12分
考點:(1)空間位置關系的證明;(2)利用向量解決立體幾何問題.
科目:高中數學 來源: 題型:解答題
如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面
平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱AB上的動點.
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45o,求的值;
(3)寫出點E到直線D1C距離的最大值及此時點E的位置(結論不要求證明).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在四棱錐中,
//
,
,
,
平面
,
.
(1)求證:平面
;
(2)求異面直線與
所成角的余弦值;
(3)設點為線段
上一點,且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
四棱錐P—ABCD的底面是邊長為2的菱形,∠DAB=60°,側棱,
,M、N兩點分別在側棱PB、PD上,
.
(1)求證:PA⊥平面MNC。
(2)求平面NPC與平面MNC的夾角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,且滿足=
=
=
(如圖(1)),將△AEF沿EF折起到△
EF的位置,使二面角
EF
B成直二面角,連接
B、
P(如圖(2)).
(1)求證: E⊥平面BEP;
(2)求直線E與平面
BP所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點,E為母線PB的中點,F為底面圓周上一點,滿足EF⊥DE.
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com