A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 根據函數的奇偶性判斷,①③,根據對稱的定義判斷②,根據三角函數的圖象判斷④
解答 解:①y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$,f(-x)=$\frac{1}{2}$+$\frac{1}{{2}^{-x}-1}$=$\frac{1}{2}$+$\frac{{2}^{x}}{1-{2}^{x}}$=$\frac{1}{2}$-$\frac{{2}^{x}-1+1}{{2}^{x}-1}$=-$\frac{1}{2}$-$\frac{1}{{2}^{x}-1}$=-($\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$)=-f(x),
∴函數為奇函數,則圖象關于(0,0)對稱,故正確
②y=x3+x+1的圖象關于(0,1)對稱;
由題意設對稱中心的坐標為(a,b),
則有2b=f(a+x)+f(a-x)對任意x均成立,代入函數解析式得,
2b=(a+x)3+3(a+x)+1+(a-x)3+3(a-x)+1對任意x均成立,
∴a=0,b=1
即對稱中心(0,1),故正確
③y=$\frac{1}{{{x^2}-1}}$的圖象關于直線x=0對稱,因為函數為偶函數,故函數關于y軸(x=0)對稱,故正確,
④y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)的圖象關于直線x+$\frac{π}{4}$=$\frac{π}{2}$對稱,即x=$\frac{π}{4}$對稱,故正確.
故選:A
點評 本題考查了函數對稱中心和對稱軸的問題,關鍵是掌握其概念,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=$\frac{1}{x}$ | B. | f(x)=x4 | C. | f(x)=2x | D. | f(x)=x-$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | 2 | C. | $\frac{\sqrt{15}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 數列{bn}是等差數列,{bn}的公差也為d | |
B. | 數列{bn}是等差數列,{bn}的公差為2d | |
C. | 數列{an+bn}是等差數列,{an+bn}的公差為d | |
D. | 數列{an-bn}是等差數列,{an-bn}的公差為$\fracp9vv5xb5{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com