A. | 1 | B. | $\frac{1}{11}$ | C. | -$\frac{1}{13}$ | D. | -$\frac{1}{7}$ |
分析 推導出數列{$\frac{1}{{a}_{n}+1}$}的公差d=$\frac{1}{2}$($\frac{1}{{a}_{5}+1}-\frac{1}{{a}_{3}+1}$)=0,再求出$\frac{1}{{a}_{1}+1}$=$\frac{1}{2}$,由此能求出a11.
解答 解:∵數列{an}中,a3=1,a5=1,數列{$\frac{1}{{a}_{n}+1}$}是等差數列,
∴數列{$\frac{1}{{a}_{n}+1}$}的公差d=$\frac{1}{2}$($\frac{1}{{a}_{5}+1}-\frac{1}{{a}_{3}+1}$)=$\frac{1}{2}$($\frac{1}{2}-\frac{1}{2}$)=0.
∴$\frac{1}{{a}_{1}+1}$=$\frac{1}{{a}_{3}+1}-2×0$=$\frac{1}{2}$,
∴$\frac{1}{{a}_{11}+1}=\frac{1}{2}$,解得a11=1.
故選:A.
點評 本題考查數列的第11項的求法,是基礎題,解題時要認真審題,注意等差數列的性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2016 | B. | 1680 | C. | 1344 | D. | 1008 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com