【題目】如圖,某城市有一塊半徑為(單位:百米)的圓形景觀,圓心為
,有兩條與圓形景觀相切且互相垂直的道路.最初規劃在拐角處
圖中陰影部分
只有一塊綠化地,后來有眾多市民建議在綠化地上建一條小路,便于市民快捷地往返兩條道路.規劃部門采納了此建議,決定在綠化地中增建一條與圓
相切的小道
問:
兩點應選在何處可使得小道
最短?
科目:高中數學 來源: 題型:
【題目】《九章算術》中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉騰.在如下圖所示的陽馬P-ABCD中,側棱底面ABCD,且
,則當點E在下列四個位置:PA中點、PB中點、PC中點、PD中點時分別形成的四面體E-BCD中,鱉臑有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知曲線,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:p(2cosθ-sinθ)=6.
(1)試寫出直線l的直角坐標方程和曲線C1的參數方程;
(2)在子曲線C1上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方形的邊長為分別為
的中點,以
為棱將正方形
折成如圖所示的
的二面角,點
在線段
上.
(1)若為
的中點,且直線
,由
三點所確定平面的交點為
,試確定點
的位置,并證明直線
平面
;
(2)是否存在點,使得直線
與平面
所成的角為
;若存在,求此時二面角
的余弦值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面與平面
平行的充分條件可以是( )
A.內有無窮多條直線都與
平行
B.直線,
,且直線a不在
內,也不在
內
C.直線,直線
,且
,
D.內的任何一條直線都與
平行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列關于
的性質:
①是周期函數,3是它的一個周期;
②是偶函數;
③方程有有理根;
④方程與方程
的解集相同;
⑤是周期函數,
是它的一個周期.
其中正確的個數為( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com