分析 (1)根據積的求導法則求出函數的導數即可;
(2)解關于導函數的不等式,求出函數的單調區間即可;
(3)根據函數的單調性,求出函數的極值即可.
解答 解:(1)f′(x)=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)(x-1)+(x+1)2=3x2+2x-1,
(2)由(1)令f′(x)>0,解得:x>$\frac{1}{3}$或x<-1,
令f′(x)<0,解得:-1<x<$\frac{1}{3}$,
故f(x)在(-∞,-1),($\frac{1}{3}$,+∞)單調遞增,在(-1,$\frac{1}{3}$)單調遞減;
(3)由(2)得:f(x)極大值=f(-1)=0,(x)極小值=f($\frac{1}{3}$)=-$\frac{32}{27}$.
點評 本題考查了函數的單調性、極值問題,考查導數的應用,是一道基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | e2=$\frac{\sqrt{2}+1}{2}$ | B. | e2=$\frac{\sqrt{3}+1}{2}$ | C. | e2=$\frac{3}{2}$ | D. | e2=$\frac{\sqrt{5}+1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com