【題目】某市勞動部門堅持就業優先,釆取多項措施加快發展新興產業,服務經濟,帶來大量就業崗位,據政府工作報告顯示,截至2018年末,全市城鎮新增就業21.9萬人,創歷史新高.城鎮登記失業率為4.2%,比上年度下降0.73個百分點,處于近20年來的最低水平.
(1)現從該城鎮適齡人群中抽取100人,得到如下列聯表:
失業 | 就業 | 合計 | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合計 | 5 | 95 | 100 |
根據聯表判斷是否有99%的把握認為失業與性別有關?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)調查顯示,新增就業人群中,新興業態,民營經濟,大型國企對就業支撐作用不斷增強,其崗位比例為2∶5∶3,現要抽取一個樣本容量為50的樣本,則這三種崗位應該各抽取多少人?
科目:高中數學 來源: 題型:
【題目】2019年11月份,全國工業生產者出廠價格同比下降,環比下降
某企業在了解市場動態之后,決定根據市場動態及時作出相應調整,并結合企業自身的情況作出相應的出廠價格,該企業統計了2019年1~10月份產品的生產數量
(單位:萬件)以及銷售總額
(單位:十萬元)之間的關系如下表:
2.08 | 2.12 | 2.19 | 2.28 | 2.36 | 2.48 | 2.59 | 2.68 | 2.80 | 2.87 | |
4.25 | 4.37 | 4.40 | 4.55 | 4.64 | 4.75 | 4.92 | 5.03 | 5.14 | 5.26 |
(1)計算的值;
(2)計算相關系數,并通過
的大小說明
與
之間的相關程度;
(3)求與
的線性回歸方程
,并推測當產量為3.2萬件時銷售額為多少.(該問中運算結果保留兩位小數)
附:回歸直線方程中的斜率和截距的最小二乘估計公式分別為
,
;
相關系數.
參考數據:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解全市統考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數據用該組區間中點作代表);
(2)由直方圖可認為考生考試成績z服從正態分布,其中
分別取考生的平均成績
和考生成績的方差
,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數估計有多少人?
(3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數為,求
.(精確到0.001)
附:①;
②,則
;
③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數據(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽
個/分鐘.當
,且
時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的短軸長為
,離心率為
.
(1)求橢圓的標準方程;
(2)直線平行于直線
,且與橢圓
交于
兩個不同的點,若
為鈍角,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
且
,圓
,點
,
是圓
上的動點,線段
的垂直平分線交直線
于點
,點
的軌跡為曲線
.
(1)討論曲線的形狀,并求其方程;
(2)若,且
面積的最大值為
,直線
過點
且不垂直于坐標軸,
與曲線
交于
,點
關于
軸的對稱點為
.求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以直角坐標系的原點為極點,
軸的正半軸為極軸,且兩個坐標系取相等的長度單位,
已知曲線的參數方程為
(
為參數),曲線
的極坐標方程為
.曲線
的圖象與
軸、
軸分別交于
兩點.
(1)判斷兩點與曲線
的位置關系;
(2)點是曲線
上異于
兩點的動點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),直線
的參數方程為
(
為參數),設直線
與
的交點為
,當
變化時點
的軌跡為曲線
.
(1)求出曲線的普通方程;
(2)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
,點
為曲線
上的動點,求點
到直線
的距離的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com