【題目】設△ABC中,角A,B,C所對的邊分別為a,b,c,則“∠C>90°”的一個充分非必要條件是( )
A.sin2A+sin2B<sin2C
B.sinA= ,(A為銳角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB
【答案】B
【解析】解:A.若sin2A+sin2B<sin2C,則a2+b2<c2 , 即∠C>90°為鈍角,反之也成立.為充要條件.
B.若sinA= ,cosB=
,則cosA=
,sinB=
,
則cosC=﹣cos(A+B)=﹣[cosAcosB﹣sinAsinB]=﹣( )=
<0,則滿足條件.
C.當C=90°時,如a=1,b=2,則c= ,滿足c2>2(a+b﹣1),但此時C=90°,即充分性不成立.
D.若“∠C>90°,則“A+B<90°,即0°<A<90°﹣B,
∴sinA<sin(90°﹣B)=cosB,即為充要條件.
故選:B
根據充分條件和必要條件的定義,即可得到結論.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga (其中a>0,且a≠1).
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性并給出證明;
(3)若x∈時,函數f(x)的值域是[0,1],求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設A(x1 , y1),B(x2 , y2)滿足
=
.
(1)求證: +
=
;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】信息科技的進步和互聯網商業模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現在銀行的大部分業務都可以通過智能終端設備完成,多家銀行職員人數在悄然減少.某銀行現有職員320人,平均每人每年可創利20萬元.據評估,在經營條件不變的前提下,每裁員1人,則留崗職員每人每年多創利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉所需人數不得小于現有職員的,為使裁員后獲得的經濟效益最大,該銀行應裁員多少人?此時銀行所獲得的最大經濟效益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若存在實數
,使
成立,則稱
為
的不動點.
(1)當時,求
的不動點;
(2)若對于任意的實數 函數
恒有兩個相異的不動點,求實數
的取值范圍;
(3)在(2)的條件下,若的圖象上
兩點的橫坐標是函數
的不動點,且直線
是線段
的垂直平分線,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,且底面與側面
垂直,
,
分別為線段
的中點,
,
,
,且
.
(1)證明: 平面
;
(2)求與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com