【題目】信息科技的進步和互聯網商業模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現在銀行的大部分業務都可以通過智能終端設備完成,多家銀行職員人數在悄然減少.某銀行現有職員320人,平均每人每年可創利20萬元.據評估,在經營條件不變的前提下,每裁員1人,則留崗職員每人每年多創利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉所需人數不得小于現有職員的,為使裁員后獲得的經濟效益最大,該銀行應裁員多少人?此時銀行所獲得的最大經濟效益是多少萬元?
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說:“如果物理成績好,那么學習數學就沒什么問題.”某班針對“高中生物理學習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論.現從該班隨機抽取5名學生在一次考試中的物理和數學成績,如下表:
編號 成績 | 1 | 2 | 3 | 4 | 5 |
物理( | 90 | 85 | 74 | 68 | 63 |
數學( | 130 | 125 | 110 | 95 | 90 |
(1)求數學成績關于物理成績
的線性回歸方程
(
精確到
),若某位學生的物理成績為80分,預測他的數學成績;
(2)要從抽取的五位學生中隨機選出三位參加一項知識競賽,以表示選中的學生的數學成績高于100分的人數,求隨機變量
的分布列及數學期望.
(參數公式: ,
.)
參考數據: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
平面
.
(1)求證: 平面
;
(2)若為線段
的中點,且過
三點的平面與線段
交于點
,確定點
的位置,說明理由;并求三棱錐
的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點.
(1)若,求證:無論點P在DD1上如何移動,總有BP⊥MN;
(2)棱DD1上是否存在這樣的點P,使得平面APC1⊥平面ACC1?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,圓C的參數方程為 (θ為參數),直線l經過定點P(2,3),傾斜角為
.
(Ⅰ)寫出直線l的參數方程和圓C的標準方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在
上的奇函數.
(1)求的解析式;
(2)證明:函數在定義域上是增函數;
(3)設是否存在正實數
使得函數
在
內的最小值為
?若存在,求出
的值;若存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的某種產品被檢測出其中一項質量指標存在問題.該企業為了檢查生產該產品的甲,乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表1是甲流水線樣本的頻數分布表,圖1是乙流水線樣本的頻率分布直方圖.
(1)根據圖,1估計乙流水線生產產品該質量指標值的中位數;
(2)若將頻率視為概率,某個月內甲,乙兩條流水線均生產了5000件產品,則甲,乙兩條流水線分別生產出不合格品約多少件?
(3)根據已知條件完成下面列聯表,并回答是否有85%的把握認為“該企業生產的這種產品的質量指標值與甲,乙兩條流水線的選擇有關”?
附: (其中
為樣本容量)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的乒乓球被指定為乒乓球比賽專用球.日前有關部門對某批產品進行了抽樣檢測,檢測結果如下表所示:
抽取球數n | 50 | 100 | 200 | 500 | 1 000 | 2 000 |
優等品數m | 45 | 92 | 194 | 470 | 954 | 1 902 |
優等品頻率 |
(1)計算表中乒乓球為優等品的頻率.
(2)從這批乒乓球產品中任取一個,檢測出為優等品的概率是多少?(結果保留到小數點后三位)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com