日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

11.過拋物線y2=4x的焦點(diǎn)F且傾斜角為$\frac{π}{4}$的直線交拋物線于A,B兩點(diǎn),||FB|-|FA||=4$\sqrt{2}$.

分析 先設(shè)點(diǎn)A,B的坐標(biāo),求出直線方程后與拋物線方程聯(lián)立消去y得到關(guān)于x的一元二次方程,求出兩根,再由拋物線的定義得到答案.

解答 解:拋物線y2=4x的焦點(diǎn)F(1,0),準(zhǔn)線為x=-1.
設(shè)A(x1,y1),B(x2,y2
由$\left\{\begin{array}{l}{y=x-1}\\{{y}^{2}=4x}\end{array}\right.$,可得x2-6x+1=0,解得x1=3+2$\sqrt{2}$,x2=3-2$\sqrt{2}$,
由拋物線的定義可得|FA|=x1+1=4+2$\sqrt{2}$,|FB|=x2+1=4-2$\sqrt{2}$,
則||FB|-|FA||=4$\sqrt{2}$,
故答案為4$\sqrt{2}$.

點(diǎn)評 本題主要考查直線與拋物線的位置關(guān)系,注意拋物線定義的運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若滿足x,y約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=x+y的最大值為(  )
A.$\frac{3}{2}$B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-m|-|x+3m|(m>0).
(Ⅰ)當(dāng)m=1時,求不等式f(x)≥1的解集;
(Ⅱ)對于任意實數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖1,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E為AD中點(diǎn),EF⊥BC,垂足為F.沿EF將四邊形ABFE折起,連接AD,AC,BC,得到如圖2所示的六面體ABCDEF.若折起后AB的中點(diǎn)M到點(diǎn)D的距離為3.

(Ⅰ)求證:平面ABFE⊥平面CDEF;
(Ⅱ)求六面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<2}\\{{x}^{2},x≥2}\end{array}\right.$,若f(a+1)≥f(2a-1),則實數(shù)a的取值范圍是(  )
A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.實驗測得四組數(shù)對(x,y)的值為(1,2),(2,5),(4,7),(5,10),則y與x之間的回歸直線方程可能是(  )
A.$\hat y=x+3$B.$\hat y=x+4$C.$\hat y=2x+3$D.$\hat y=2x+4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)是定義在R上的奇函數(shù),對任意兩個正數(shù)x1,x2(x1<x2)都有$\frac{{f({x_1})}}{x_1}>\frac{{f({x_2})}}{x_2}$,記$a=25f({{{0.2}^2}}),b=f(1),c=-{log_5}3×f({{{log}_{\frac{1}{3}}}5})$,則a,b,c之間的大小關(guān)系為(  )
A.a>b>cB.b>c>aC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函數(shù)”,則實數(shù)m的取值范圍是(  )
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=|log3x|,實數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值為2,則$\frac{n}{m}$=9.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 99热超碰 | 一级黄色在线观看 | 亚洲精品www久久久久久广东 | 亚洲一区二区三区视频 | 国产一级在线观看 | 国内精品一区二区三区 | 日韩首页 | av网址在线 | 九九视频免费观看 | 中文字幕视频 | 国产无遮挡又黄又爽又色 | 国产精品美女久久 | 激情视频网址 | 自拍偷拍专区 | 黄色日皮视频 | av在线播放免费 | 免费国产一区二区 | 三级a毛片 | 在线观看视频国产 | 国产精品理论片 | 99久久精品一区二区成人 | 在线中文字幕 | 国语对白永久免费 | 91亚洲精品在线 | 国产精品二区一区二区aⅴ污介绍 | 欧美一区二 | 免费的毛片 | 成人毛片100免费观看 | 激情五月婷婷综合 | 久久99免费视频 | 亚洲区一区二 | 亚洲国产福利 | 久久久一区二区三区 | 亚洲欧美精品在线 | 黄色激情视频网站 | 狠狠做深爱婷婷久久综合一区 | 69av在线| 欧美黄色网| 午夜激情在线观看 | 免费看黄色aaaaaa 片 | 97人人干 |