分析 (Ⅰ)求出函數的導數,通過討論a的范圍,求出函數的單調區間即可;
(Ⅱ)求出$m=f(a)=-\frac{1}{2}{a^2}+a-alna$,根據f'(a)=-a-lnaf'(a)=0有唯一根a0,得到a0∈(0.5,0.6),代入判斷即可.
解答 解:(I)$f'(x)=x-(a-1)-\frac{a}{x}=\frac{{{x^2}-(a-1)x-a}}{x}(x>0)$$f'(x)=\frac{(x+1)(x-a)}{x}$.
當a≤0時,f'(x)>0恒成立,所以f(x)在(0,+∞)上單調遞增.
當a>0時,解f'(x)>0得x>a,解f'(x)<0得0<x<a.
所以f(x)在(0,a)上單調遞減,在(a,+∞)上單調遞增.
綜上,當a≤0時,f(x)在(0,+∞)上單調遞增.
當a>0時,f(x)在(0,a)上單調遞減,在(a,+∞)上單調遞增.
(II)由(I)知a>0且$m=f(a)=-\frac{1}{2}{a^2}+a-alna$,
f'(a)=-a-lna,f'(a)=0有唯一根a0,
∵ln0.5<-0.5,ln0.6>-0.6,∴a0∈(0.5,0.6).
且f(a)在(0,a0)上遞增,在(a0,+∞)遞減,
所以m=f(a)≤f(a0)=-$\frac{1}{2}$${{a}_{0}}^{2}$+a0-a0lna0=$\frac{1}{2}$${{a}_{0}}^{2}$+a0<$\frac{1}{2}$×0.36+0.6=0.78<1.
點評 本題考查了函數的單調性問題,考查導數的應用以及不等式的證明,考查分類討論思想,轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{5}$ | B. | 3 | C. | $\frac{6\sqrt{5}}{5}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{2}{5}$ | D. | $-\frac{2}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com