【題目】人造地球衛(wèi)星繞地球運(yùn)行遵循開(kāi)普勒行星運(yùn)動(dòng)定律:衛(wèi)星在以地球?yàn)榻裹c(diǎn)的橢圓軌道上繞地球運(yùn)行時(shí),其運(yùn)行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時(shí)間內(nèi)掃過(guò)的面積相等.設(shè)橢圓的長(zhǎng)軸長(zhǎng)、焦距分別為李明根據(jù)所學(xué)的橢圓知識(shí),得到下列結(jié)論:
①衛(wèi)星向徑的最小值為,最大值為
;
②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;
③衛(wèi)星運(yùn)行速度在近地點(diǎn)時(shí)最小,在遠(yuǎn)地點(diǎn)時(shí)最大
其中正確結(jié)論的個(gè)數(shù)是
A. B.
C.
D.
【答案】C
【解析】
根據(jù)橢圓的焦半徑的最值來(lái)判斷命題①,根據(jù)橢圓的離心率大小與橢圓的扁平程度來(lái)判斷命題②,根據(jù)題中“速度的變化服從面積守恒規(guī)律”來(lái)判斷命題③。
對(duì)于命題①,由橢圓的幾何性質(zhì)得知,橢圓上一點(diǎn)到焦點(diǎn)距離的最小值為,最大值為
,所以,衛(wèi)星向徑的最小值為
,最大值為
,結(jié)論①正確;
對(duì)于命題②,由橢圓的幾何性質(zhì)知,當(dāng)橢圓的離心率越大,橢圓越扁,衛(wèi)星向徑的最小值與最大值的比值
,當(dāng)這個(gè)比值越小,則
越大,此時(shí),橢圓軌道越扁,結(jié)論②正確;
對(duì)于命題③,由于速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑在相同的時(shí)間內(nèi)掃過(guò)的面積相等,當(dāng)衛(wèi)星越靠近遠(yuǎn)地點(diǎn)時(shí),向徑越大,當(dāng)衛(wèi)星越靠近近地點(diǎn)時(shí),向徑越小,由于在相同時(shí)間掃過(guò)的面積相等,則向徑越大,速度越小,所以,衛(wèi)星運(yùn)行速度在近地點(diǎn)時(shí)最大,在遠(yuǎn)地點(diǎn)時(shí)最小,結(jié)論③錯(cuò)誤。故選:C。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)全民健身,加大國(guó)際體育文化的交流,蘭州市從2011年開(kāi)始舉辦“蘭州國(guó)際馬拉松賽”,為了了解市民健身情況,某課題組跟蹤了蘭州某跑吧群在各屆全程馬拉松比賽中群友的平均成績(jī)(單位:小時(shí)),具體如下:
(1)求關(guān)于
的線性回歸方程;
(2)利用(1)的回歸方程,分析2011年到2015年該跑吧群的成績(jī)變化情況,反映市民健身的效果,并預(yù)測(cè)2016年該跑吧群的比賽平均成績(jī).
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線在
處的切線方程為
.
(Ⅰ)求值.
(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為非負(fù)實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),畫出函數(shù)
的草圖,并寫出函數(shù)
的單調(diào)遞增區(qū)間;
(2)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年4月1日,新華通訊社發(fā)布:國(guó)務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點(diǎn).
(1)為了響應(yīng)國(guó)家號(hào)召,北京市某高校立即在所屬的8個(gè)學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問(wèn)卷調(diào)查,8個(gè)學(xué)院的調(diào)查人數(shù)及統(tǒng)計(jì)數(shù)據(jù)如下:
調(diào)查人數(shù)( | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整體搬遷人數(shù)( | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量
的線性回歸方程
保留小數(shù)點(diǎn)后兩位有效數(shù)字);若該校共有教職員工2500人,請(qǐng)預(yù)測(cè)該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);
(2)若該校的8位院長(zhǎng)中有5位院長(zhǎng)愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長(zhǎng)中隨機(jī)選取4位院長(zhǎng)組成考察團(tuán)赴雄安新區(qū)進(jìn)行實(shí)地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長(zhǎng)人數(shù),求
的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
為等邊三角形,
,
,且
,
,
,
為
中點(diǎn).
(1)求證:平面平面
;
(2)若線段上存在點(diǎn)
,使得二面角
的大小為
,求
的值;
(3)在(2)的條件下,求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于
的方程
有5個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)
的取值范圍是 ( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com