【題目】已知,函數(shù)
.
(1)當(dāng)時(shí),解不等式
;
(2)若關(guān)于的方程
有兩個(gè)不等的實(shí)數(shù)根,求
的取值范圍;
(3)設(shè),若對(duì)任意
,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過(guò)1,求
的取值范圍.
【答案】(1)或
;(2)
;(3)
.
【解析】
(1)由題意,代入,解對(duì)數(shù)不等式,即可求解.
(2)由題意,根據(jù)兩對(duì)數(shù)式相等,得到真數(shù)值相等,考慮真數(shù)大于0,考慮方程有兩個(gè)不等的實(shí)數(shù)根,可求解參數(shù)范圍.
(3)根據(jù)題意,函數(shù)在區(qū)間
上的最大值與最小值的差不超過(guò)1,則
對(duì)
恒成立,轉(zhuǎn)化成
,對(duì)任意
恒成立,根據(jù)恒成立思想,即可求解.
(1)當(dāng)時(shí),
,由
得
,
得
,即
,解得
或
,
當(dāng)
時(shí),不等式
的解集為
或
(2)由題意得,該問(wèn)題等價(jià)于
,化簡(jiǎn)得
,
即
①當(dāng)時(shí),
,不合題意,舍去.
②當(dāng)時(shí),
,不合題意,舍去.
③當(dāng)且
時(shí),
且
.
由,得
(
且
);
由,得
(
且
).
依題意,若原方程由兩個(gè)不等的實(shí)數(shù)根,則(
且
).
故所求的取值范圍為
.
(3)易得,當(dāng)時(shí),
在
上單調(diào)遞減.
故函數(shù)在區(qū)間
上的最大值與最小值分別為
.
則對(duì)
恒成立,
即,對(duì)任意
恒成立.
因?yàn)?/span>,函數(shù)
的對(duì)稱(chēng)軸
,
函數(shù)在區(qū)間
上單調(diào)遞增,
故時(shí),
有最小值
,
,得
故所求的取值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=ax+1和拋物線y2=4x相交于不同的A,B兩點(diǎn).
(Ⅰ)若a=-2,求弦長(zhǎng)|AB|;
(Ⅱ)若以AB為直徑的圓經(jīng)過(guò)原點(diǎn)O,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線方程經(jīng)過(guò)兩條直線
與
的交點(diǎn)
.
(1)求垂直于直線的直線
的方程;
(2)求與坐標(biāo)軸相交于兩點(diǎn),且以為中點(diǎn)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市電視臺(tái)為了宣傳舉辦問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了人,回答問(wèn)題統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | 5 | 0.5 | |
第2組 | 0.9 | ||
第3組 | 27 | ||
第4組 | 0.36 | ||
第5組 | 3 |
(Ⅰ) 分別求出的值;
(Ⅱ) 從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個(gè)零點(diǎn),則a的取值范圍為( )
A. B.
C.
D.
【答案】D
【解析】
恰好有3個(gè)零點(diǎn), 等價(jià)于
的圖象有三個(gè)不同的交點(diǎn),
作出的圖象,根據(jù)數(shù)形結(jié)合可得結(jié)果.
恰好有3個(gè)零點(diǎn),
等價(jià)于有三個(gè)根,
等價(jià)于的圖象有三個(gè)不同的交點(diǎn),
作出的圖象,如圖,
由圖可知,
當(dāng)時(shí),
的圖象有三個(gè)交點(diǎn),
即當(dāng)時(shí),
恰好有3個(gè)零點(diǎn),
所以,的取值范圍是
,故選D.
【點(diǎn)睛】
本題主要考查函數(shù)的零點(diǎn)與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問(wèn)題以及函數(shù)零點(diǎn)問(wèn)題是高考的高頻考點(diǎn),考生需要對(duì)初高中階段學(xué)習(xí)的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對(duì)稱(chēng)性非常熟悉;另外,函數(shù)零點(diǎn)的幾種等價(jià)形式:函數(shù)的零點(diǎn)
函數(shù)
在
軸的交點(diǎn)
方程
的根
函數(shù)
與
的交點(diǎn).
【題型】單選題
【結(jié)束】
13
【題目】設(shè)集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)現(xiàn)有一個(gè)直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在點(diǎn)P處有一燈塔(如圖),且點(diǎn)P到BC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過(guò)燈塔P增加一道分隔網(wǎng)EF,在△AEF內(nèi)試驗(yàn)養(yǎng)殖一種新的水產(chǎn)品,當(dāng)△AEF的面積最小時(shí),對(duì)原有水產(chǎn)品養(yǎng)殖的影響最小.設(shè)AE=d.
(1)若P是EF的中點(diǎn),求d的值;
(2)求對(duì)原有水產(chǎn)品養(yǎng)殖的影響最小時(shí)的d的值,并求△AEF面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,公路圍成的是一塊頂角為
的角形耕地,其中
,在該塊土地中
處有一小型建筑,經(jīng)測(cè)量,它到公路
的距離分別為
,現(xiàn)要過(guò)點(diǎn)
修建一條直線公路
,將三條公路圍成的區(qū)域
建成一個(gè)工業(yè)園.
(1)以為坐標(biāo)原點(diǎn)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求出
點(diǎn)的坐標(biāo);
(2)三條公路圍成的工業(yè)園區(qū)的面積恰為
,求公路
所在直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若在定義域存在實(shí)數(shù)
,滿足
,則稱(chēng)
為“局部奇函數(shù)”.
(1)已知二次函數(shù)(
),試判斷
是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)設(shè)是定義在
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍;
(3)若
為其定義域上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示一位騎自行車(chē)者和一位騎摩托車(chē)者在相距的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖,可知騎自行車(chē)者用了
,沿途休息了
,騎摩托車(chē)者用了
,根據(jù)這個(gè)圖象,提出關(guān)于這兩個(gè)旅行者的如下信息:
①騎自行車(chē)者比騎摩托車(chē)者早出發(fā),晚到
;
②騎自行車(chē)者是變速運(yùn)動(dòng),騎摩托者是勻速運(yùn)動(dòng);
③騎摩托車(chē)者在出發(fā)了后,追上了騎自行車(chē)者.
其中正確信息的序號(hào)是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com