【題目】已知函數f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函數f(x)的最小正周期;
(Ⅱ)求函數f(x)的單調遞增區間;
(Ⅲ)求函數f(x)在區間[﹣ ,
]上的最小值和最大值.
【答案】解:( I)函數f(x)=2cosx(sinx+cosx)=2sinxcosx+2cos2x=sin2x+cos2x+1= sin(2x+
)+1,∴函數f(x)的最小正周期為:T=
=π;
(Ⅱ) 由 ,解得
,∴函數f(x)的單調遞增區間為
(k∈Z);
( III)由 ,得
,令2x+
=﹣
,解得x=﹣
,∴f(x)min=
=
×(﹣
)+1=0,
令2x+ =
,解得x=
,∴f(x)max=
=
×1+1=
+1.
【解析】( I)根據正弦函數和余弦函數的二倍角化簡成正弦型函數可得周期。(Ⅱ)把看成一個整體代入正弦函數的單調區間整理即得。(Ⅲ)由整體思想可得
≤ 2 x +
≤
根據正弦函數的單調性可得 ,最小值當整體取-
時得到,最大值 當整體取
時得到。
【考點精析】本題主要考查了三角函數的最值的相關知識點,需要掌握函數,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1﹣x)+loga(x+3)(a>0,且a≠1)
(1)求函數f(x)的定義域和值域;
(2)若函數 f(x)有最小值為﹣2,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐A﹣BCD中,△ABD,△BCD均為正三角形,且平面ABD⊥平面BCD,點O,M分別為棱BD,AC的中點,則異面直線AB與OM所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉,12秒旋轉一周.已知時間t=0時,點A的坐標是 ,則當0≤t≤12時,動點A的縱坐標y關于t(單位:秒)的函數的單調遞增區間是( )
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
參考公式:b= =
.
(1)畫出散點圖;
(2)求回歸直線方程;
(3)試預測廣告費支出為10百萬元時,銷售額多大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2x3+3ax2+3bx+8c在x=1及x=2時取得極值. (Ⅰ)求a、b的值;
(Ⅱ)若對任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017高考特別強調了要增加對數學文化的考查,為此某校高三年級特命制了一套與數學文化有關的專題訓練卷(文、理科試卷滿分均為100分),并對整個高三年級的學生進行了測試.現從這些學生中隨機抽取了50名學生的成績,按照成績為 ,
,…,
分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分).
(1)求頻率分布直方圖中的 的值,并估計所抽取的50名學生成績的平均數、中位數(同一組中的數據用該組區間的中點值代表);
(2)若高三年級共有2000名學生,試估計高三學生中這次測試成績不低于70分的人數;
(3)若利用分層抽樣的方法從樣本中成績不低于70分的三組學生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求后兩組中至少有1人被抽到的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com