A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由條件利用基本初等函數的導數,導數的運算法則求得出所給的各個函數的導數,從而得出結論.
解答 解:∵(3x)′=3x ln3,∴①(3x)′=3xlog3e 錯誤;
∵${({{{log}_2}x})^′}=\frac{1}{xln2}$,故 ②${({{{log}_2}x})^′}=\frac{1}{xln2}$ 正確;
∵(ex)′=ex,故③(ex)′=ex正確;
∵${(\frac{1}{lnx})}^{′}$=$\frac{0-\frac{1}{x}}{{(lnx)}^{2}}$=$\frac{1}{x{•(lnx)}^{2}}$,故 ④${({\frac{1}{lnx}})^′}=x$ 錯誤,
故選:B.
點評 本題主要考查基本初等函數的導數,求函數的導數的方法,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | log0.44>log0.46 | B. | 1.013.4>1.013.5 | C. | 3.50.3<3.40.3 | D. | log78<1og87 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4034 | B. | 4032 | C. | 4030 | D. | 4028 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1007 | B. | 1006 | C. | 2014 | D. | 2013 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
(1)不超過4千米的里程收費12元; (2)超過4千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于0.5千米則不收費,若其大于或等于0.5千米則按1千米收費); 當車程超過4千米時,另收燃油附加費1元. |
A. | y=2[x+$\frac{1}{2}$]+4 | B. | y=2[x+$\frac{1}{2}$]+5 | C. | y=2[x-$\frac{1}{2}$]+4 | D. | y=2[x+$\frac{1}{2}$]+5 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com