A. | $\frac{1}{4π}$ | B. | $1-\frac{1}{4π}$ | C. | $\frac{1}{2π}$ | D. | $1-\frac{1}{6π}$ |
分析 本題是幾何概型的意義,關鍵是要求出銅錢面積的大小和中間正方形孔面積的大小,然后代入幾何概型計算公式進行求解.
解答 解:∵S正=82=64mm2,S圓=π($\frac{32}{2}$)2=256πmm2,
∴該粒米落在銅錢的正方形小孔內的概率為P=$\frac{{S}_{{\;}_{正}}}{{S}_{圓}}$=$\frac{64}{256π}=\frac{1}{4π}$,
∴該粒米未落在銅錢的正方形小孔內的概率為1-$\frac{1}{4π}$;
故選B.
點評 本題考查了幾何概型概率的求法;幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.
科目:高中數學 來源: 題型:選擇題
A. | (-2,3) | B. | (2,3) | C. | (-∞,-1)∪(3,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
X | 0 | 2 | a |
P | $\frac{1}{6}$ | p | $\frac{1}{3}$ |
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com