分析 (Ⅰ)代入a的值,通過討論x的范圍,求出不等式的解集即可;
(Ⅱ)問題轉化為(a-2)x-3<0,x∈[-1,1],得到關于a的不等式組,解出即可.
解答 解:(Ⅰ)a=1時,f(x)=|2x-3|+x-6=$\left\{\begin{array}{l}{3x-9,x≥\frac{3}{2}}\\{-3-x,x<\frac{3}{2}}\end{array}\right.$,
故原不等式等價于$\left\{\begin{array}{l}{x≥\frac{3}{2}}\\{3x-9≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x<\frac{3}{2}}\\{-3-x≥0}\end{array}\right.$,
解得:x≥3或x≤-3,
故原不等式的解集是{x|x≥3或x≤-3};
(Ⅱ)x∈[-1,1]時,不等式f(x)<0恒成立,
即3-2x+ax-6<0恒成立,
即(a-2)x-3<0,x∈[-1,1],
由$\left\{\begin{array}{l}{(a-2)(-1)-3<0}\\{(a-2)-3<0}\end{array}\right.$,
解得:-1<a<5,
故a的范圍是(-1,5).
點評 本題考查了解絕對值不等式問題,考查分類討論思想,轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ${A}_{9}^{9}$種 | B. | ${A}_{12}^{8}$種 | C. | 8${A}_{8}^{8}$種 | D. | 2${A}_{8}^{8}$${A}_{4}^{4}$種 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 974 | B. | $\frac{63}{2}$ | C. | 57 | D. | 33 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com