【題目】以直角坐標系的原點為極點,
軸的正半軸為極軸建立極坐標系,已知點
的直角坐標為
,若直線
的極坐標方程為
,曲線
的參數方程是
(
為參數).
(1)求直線l和曲線的普通方程;
(2)設直線l和曲線交于
兩點,求
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-2x.
(1)求f(x)的解析式,并畫出f(x)的圖象;
(2)設g(x)=f(x)-k,利用圖象討論:當實數k為何值時,函數g(x)有一個零點?二個零點?三個零點?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯表,并回答能否有
的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調查的女生中有5名數學系的學生,其中3名對冰球有興趣,現在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.
年齡(單位:歲) | ||||||
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡”45歲為分界點,由以上統計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信交流”的態度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在和
的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在
的概率.
參考數據如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值:
(其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不交于同一點的三條直線:4x+y-4=0,
:mx+y=0,
:x-my-4=0.
(1)當這三條直線不能圍成三角形時,求實數m的值;
(2)當與
,
都垂直時,求兩垂足間的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一半徑為4.8米的水輪如圖所示,水輪圓心距離水面2.4米,已知水輪每60秒逆時針轉動一圈,如果當水輪上點
從水中浮現時(圖中點
)開始計時,則( )
A.點第一次到達最高點需要10秒
B.在水輪轉動的一圈內,有20秒的時間,點距離水面的高度不低于4.8米
C.點距離水面的高度
(米)與
(秒)的函數解析式為
D.當水輪轉動50秒時,點在水面下方,距離水面1.2米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為
,橢圓
上一點
到左右兩個焦點
的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓
交于
兩點,且兩點與左右頂點不重合,若
,求四邊形
面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)設g(x)=log4,若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com