日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.設(shè)實(shí)數(shù)a∈(0,10)且a≠1,則函數(shù)f(x)=logax在(0,+∞)內(nèi)為增函數(shù)且$g(x)=\frac{a-3}{x}$在(0,+∞)內(nèi)也為增函數(shù)的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 求出f(x)和g(x)都是增函數(shù)的a的范圍,從而求出滿足條件的概率即可.

解答 解:若函數(shù)f(x)=logax在(0,+∞)內(nèi)為增函數(shù)
且$g(x)=\frac{a-3}{x}$在(0,+∞)內(nèi)也為增函數(shù),
則$\left\{\begin{array}{l}{a>1}\\{a-3<0}\end{array}\right.$,解得:1<a<3,
故滿足條件的概率p=$\frac{2}{10}$=$\frac{1}{5}$,
故選:B.

點(diǎn)評(píng) 幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)P=$\frac{N(A)}{N}$求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=ln(x+1)-\frac{ax}{x+1}(a∈R)$.
(Ⅰ)若f(0)為f(x)的極小值,求a的值;
(Ⅱ)若f(x)>0對(duì)x∈(0,+∞)恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在正三棱錐V-ABC內(nèi),有一個(gè)半球,其底面與正三棱錐的底面重合,且與正三棱錐的三個(gè)側(cè)面都相切,若半球的半徑為2,則正三棱錐的體積的最小時(shí),其底面邊長為$6\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)為奇函數(shù),當(dāng)x∈[1,4]時(shí),f(x)=x(x+1),那么當(dāng)-4≤x≤-1時(shí),f(x)的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)為單位分?jǐn)?shù),我們可以把1拆為若干個(gè)不同的單位分?jǐn)?shù)之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此類推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中a<b,a,b∈N*,設(shè)1≤x≤a,1≤y≤b,則$\frac{x+y+4}{x+2}$的最小值為(  )
A.$\frac{25}{3}$B.$\frac{23}{7}$C.$\frac{8}{7}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.點(diǎn)(-1,1)到直線x+y-2=0的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在長方形ABCD中,AB=2,AD=1,E為DC的中點(diǎn),將△DAE沿AE折起,平面DAE⊥平面ABCE,連DB,DC,BE.

(Ⅰ)求證:BE⊥平面ADE;
(Ⅱ)求AC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a2,b2,c2成等差數(shù)列,則sinB最大值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 日韩一区二区高清 | 日本不卡免费新一二三区 | 日韩欧美国产精品 | 欧美日韩在线观看中文字幕 | 久久99精品久久久久久久青青日本 | 成人精品 | 成人av播放 | 综合色久| 国产精品极品美女在线观看免费 | 日韩一区免费 | av一区二区在线观看 | 午夜影院普通用户体验区 | 欧美激情一区二区三区四区 | 成人深夜视频 | 亚洲视频一区在线 | 色吊丝2288sds中文字幕 | 91精品国产91久久久久久密臀 | 欧美 日韩 亚洲 一区 | 91麻豆精品国产91久久久资源速度 | 国产一区二区自拍 | 国产成人 综合 亚洲 | 亚洲精品99 | 国产一级做a爰片在线看免费 | 综合伊人 | 天堂伊人网 | 少妇久久久久 | 色一情一乱一伦一区二区三区 | h片免费观看| 午夜视频 | 日本精品视频网站 | 婷婷丁香社区 | 韩国精品一区二区三区 | 久久久久久久 | 中文字幕一区在线观看视频 | 久久久久久久久久久久免费 | 亚洲天堂一区二区 | 久久99精品久久久久久久 | 成人免费淫片aa视频免费 | 日韩精品一区二区三区在线 | 欧美猛交ⅹxxx乱大交视频 | 福利精品视频 |