【題目】已知點,
分別為線段
上的動點,且滿足
(1)若求直線
的方程;
(2)證明:的外接圓恒過定點(異于原點)。
【答案】(1)(2)詳見解析
【解析】
試題(1)求直線CD的方程,只需確定C,D坐標即可:,
,直線
的斜率
,直線
的方程為
.
(2)證明動圓過定點,關(guān)鍵在于表示出圓的方程,本題適宜設(shè)圓的一般式:設(shè)
,則D
,從而
解之得
,
,整理得
,所以△
的外接圓恒過定點為
.
試題解析:(1)因為,所以
, 1分
又因為,所以
,所以
, 3分
由,得
, 4分
所以直線的斜率
, 5分
所以直線的方程為
,即
. 6分
(2)設(shè),則
. 7分
則,
因為,所以
,
所以點的坐標為
8分
又設(shè)的外接圓的方程為
,
則有10分
解之得,
,
所以的外接圓的方程為
, 12分
整理得,
令,所以
(舍)或
所以△的外接圓恒過定點為
. 14分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個極值點
(
為自然對數(shù)的底數(shù)).
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點,已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB=bcosA.
(1)求 的值;
(2)若sin A=,求sin(C-
) 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標原點,橢圓C1: +
=1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2:
﹣
=1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2=
,且|F2F4|=
﹣1.
(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當(dāng)直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】男
女共
名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有
人排在一起,則不同的排法種數(shù)為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
【答案】(1),
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以
,
又,所以
,
若,則
,與
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
當(dāng)時,
,
單調(diào)遞減,且
;
當(dāng)時,
,
單調(diào)遞增;且
,
所以在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,
都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率;
(2)若,
都是從區(qū)間
上任取的一個數(shù),求
成立的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com