【題目】已知函數(shù)(
,
為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若,函數(shù)
在區(qū)間
上為增函數(shù),求整數(shù)
的最大值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)求出,令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;;(2)由于函數(shù)
在區(qū)間
上為增函數(shù),則其導(dǎo)函數(shù)
在
恒成立,再分離參數(shù)
得到
在
恒成立,此時問題變?yōu)榍蠛瘮?shù)
在區(qū)間
上的最小值問題,利用導(dǎo)數(shù)研究其單調(diào)性,求出最小值即可得結(jié)果.
試題解析:(1)由得
當(dāng)時,
,所以
在
上為增函數(shù);
當(dāng)時,
時,
,
時,
,
所以在
為減函數(shù),在
為增函數(shù),
(2)當(dāng)時,
則
若在區(qū)間
上為增函數(shù),則
在
上恒成立,即
在
上恒成立.
令,
;則
,
;
令,則
當(dāng)時,
,則
在
單調(diào)遞增
而,
所以函數(shù)在
只有一個零點,設(shè)為
,
即時,
,即
;
時,
,即
,
∴,
,有最小值
,
把代入上式可得
,
又因為,所以
,
又恒成立,所以
,又因為
為整數(shù),所以
,
所以整數(shù)的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開展,組委會為了解各所學(xué)校學(xué)生的學(xué)情,欲從四地選取200人作樣本開展調(diào)研.若來自荊州地區(qū)的考生有1000人,荊門地區(qū)的考生有2000人,襄陽地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調(diào)研結(jié)果相對準(zhǔn)確,下列判斷正確的有( )
①用分層抽樣的方法分別抽取荊州地區(qū)學(xué)生25人、荊門地區(qū)學(xué)生50人、襄陽地區(qū)學(xué)生75人、宜昌地區(qū)學(xué)生50人;
②可采用簡單隨機抽樣的方法從所有考生中選出200人開展調(diào)研;
③宜昌地區(qū)學(xué)生小劉被選中的概率為;
④襄陽地區(qū)學(xué)生小張被選中的概率為.
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號為01,02,03,,49,50的50個個體組成,利用隨機數(shù)表(以下選取了隨機數(shù)表中的第1行和第2行)選取5個個體,選取方法是從隨機數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個個體的編號為( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線
與E交于A、B兩點,且
,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標(biāo)為,記直線CA、CB的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓(
)的半焦距為
,原點
到經(jīng)過兩點
,
的直線的距離為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓
的一條直徑,若橢圓
經(jīng)過
,
兩點,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為函數(shù)
的導(dǎo)函數(shù),且
.
(1)判斷函數(shù)的單調(diào)性;
(2)若,討論函數(shù)
零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一座圓拱橋,當(dāng)水面在如圖所示位置時,拱頂離水面2米,水面寬12米,當(dāng)水面下降1米后,水面寬多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的一個焦點與拋物線
的焦點重合,且過點
.過點
的直線
交橢圓
于
,
兩點,
為橢圓的左頂點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com