已知函數(shù)的導(dǎo)數(shù)
為實數(shù),
.
(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線
相切的直線
的方程;
(Ⅲ)設(shè)函數(shù),試判斷函數(shù)
的極值點個數(shù)。
(Ⅰ)(Ⅱ)
或
(Ⅲ)
時極值點個數(shù)0,當(dāng)
時兩個極值點
解析試題分析:(Ⅰ)由已知得,, 1分
由得
.
,當(dāng)
時,
遞增;
當(dāng)時,
,
遞減.
在區(qū)間[-1,1]上的最大值為
. 2分
又.
由題意得,即
,得
為所求。 4分
(Ⅱ)解:由(1)得,點P(2,1)在曲線
上。
當(dāng)切點為P(2,1)時,切線的斜率
,
的方程為
. 5分
當(dāng)切點P不是切點時,設(shè)切點為切線
的余率
,
的方程為
。又點P(2,1)在
上,
,
,
.
切線
的方程為
.
故所求切線的方程為
或
. 8分
(Ⅲ)解:.
.
.
二次函數(shù)的判別式為
得:
.令
,得
,或
。 10分
因為,
時,
,函數(shù)
為單調(diào)遞增,極值點個數(shù)0; 11分
當(dāng)時,此時方程
有兩個不相等的實數(shù)根,根據(jù)極值點的定義,
可知函數(shù)有兩個極值點. 12分
考點:導(dǎo)數(shù)的幾何意義及函數(shù)的極值最值
點評:利用導(dǎo)數(shù)的幾何意義:函數(shù)在某一點處的導(dǎo)數(shù)值等于該點處的切線斜率,利用幾何意義在求解第二問時需分點是否在曲線上兩種情況;函數(shù)在閉區(qū)間上的最值出現(xiàn)在極值點或區(qū)間的邊界處,函數(shù)存在極值需滿足函數(shù)的導(dǎo)數(shù)值有正有負(fù)
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
),其圖像在點(1,
)處的切線方程為
.
(1)求,
的值;
(2)求函數(shù)的單調(diào)區(qū)間和極值;
(3)求函數(shù)在區(qū)間[-2,5]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在點
處的切線斜率為
.
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線
在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,求
在
的最小值;
(2)若直線對任意的
都不是曲線
的切線,求
的取值范圍;
(3)設(shè),求
的最大值
的解析式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=
,
(1)求函數(shù)的單調(diào)區(qū)間
(2)若關(guān)于的不等式
對一切
(其中
)都成立,求實數(shù)
的取值范圍;
(3)是否存在正實數(shù),使
?若不存在,說明理由;若存在,求
取值的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意
,
恒成立,試確定實數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè)關(guān)于x的不等式≥
的解集為M,且集合
,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求曲線
在點
處的切線方程;
(2)對任意,
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com