【題目】疫情后,為了支持企業(yè)復(fù)工復(fù)產(chǎn),某地政府決定向當(dāng)?shù)仄髽I(yè)發(fā)放補(bǔ)助款,其中對(duì)納稅額在萬(wàn)元至
萬(wàn)元(包括
萬(wàn)元和
萬(wàn)元)的小微企業(yè)做統(tǒng)一方案.方案要求同時(shí)具備下列兩個(gè)條件:①補(bǔ)助款
(萬(wàn)元)隨企業(yè)原納稅額
(萬(wàn)元)的增加而增加;②補(bǔ)助款不低于原納稅額
(萬(wàn)元)的
.經(jīng)測(cè)算政府決定采用函數(shù)模型
(其中
為參數(shù))作為補(bǔ)助款發(fā)放方案.
(1)判斷使用參數(shù)是否滿(mǎn)足條件,并說(shuō)明理由;
(2)求同時(shí)滿(mǎn)足條件①、②的參數(shù)的取值范圍.
【答案】(1)當(dāng)時(shí)不滿(mǎn)足條件②,見(jiàn)解析(2)
【解析】
(1)因?yàn)楫?dāng)時(shí),
,所以不滿(mǎn)足條件② ;
(2)求導(dǎo)得:,當(dāng)
時(shí),滿(mǎn)足條件①;當(dāng)
時(shí),
在
上單調(diào)遞增,所以
.由條件②可知,
,即
,等價(jià)于
在
上恒成立,問(wèn)題得解.
(1)因?yàn)楫?dāng)時(shí),
,所以當(dāng)
時(shí)不滿(mǎn)足條件② .
(2)由條件①可知,在
上單調(diào)遞增,
所以當(dāng)時(shí),
滿(mǎn)足條件;
當(dāng)時(shí),由
可得
當(dāng)時(shí)
,
單調(diào)遞增,
,解得
,
所以
由條件②可知,,即不等式
在
上恒成立,
等價(jià)于
當(dāng)時(shí),
取最小值
綜上,參數(shù)的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,
.
(1)根據(jù)散點(diǎn)圖判斷,與
哪一個(gè)更適宜作燒開(kāi)一壺水時(shí)間
關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量
成正比,那么
為多少時(shí)燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),…,
,其回歸直線(xiàn)
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在
(
為自然對(duì)數(shù)的底數(shù))處的切線(xiàn)方程;
(2)若對(duì)任意的,均有
,則稱(chēng)
為
在區(qū)間
上的下界函數(shù),
為
在區(qū)間
上的上界函數(shù).
①若,求證:
為
在
上的上界函數(shù);
②若,
為
在
上的下界函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn),受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)
的值:先請(qǐng)240名同學(xué),每人隨機(jī)寫(xiě)下兩個(gè)都小于1的正實(shí)數(shù)x,y組成的實(shí)數(shù)對(duì)
,再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)
的個(gè)數(shù)m;最后再根據(jù)計(jì)數(shù)m來(lái)估計(jì)π的值.假設(shè)統(tǒng)計(jì)結(jié)果是
,那么可以估計(jì)
的近似值為____________.(用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),滿(mǎn)足
,則( )
A.函數(shù)有2個(gè)極小值點(diǎn)和1個(gè)極大值點(diǎn)
B.函數(shù)有2個(gè)極大值點(diǎn)和1個(gè)極小值點(diǎn)
C.函數(shù)有可能只有一個(gè)零點(diǎn)
D.有且只有一個(gè)實(shí)數(shù),使得函數(shù)
有兩個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測(cè)試,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績(jī)落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中
分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再?gòu)闹羞x出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)E:(
)與圓O:
相交于A,B兩點(diǎn),且
.過(guò)劣弧
上的動(dòng)點(diǎn)
作圓O的切線(xiàn)交拋物線(xiàn)E于C,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線(xiàn)E的切線(xiàn)
,
,相交于點(diǎn)M.
(1)求拋物線(xiàn)E的方程;
(2)求點(diǎn)M到直線(xiàn)距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,
,
,點(diǎn)P為
內(nèi)一點(diǎn)(不含邊界),則
不可能為( )
A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)的和為
,記
.
(1)若是首項(xiàng)為
,公差為
的等差數(shù)列,其中
,
均為正數(shù).
①當(dāng),
,
成等差數(shù)列時(shí),求
的值;
②求證:存在唯一的正整數(shù),使得
.
(2)設(shè)數(shù)列是公比為
的等比數(shù)列,若存在
,
(
,
,
)使得
,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com