【題目】已知數(shù)列的前
項(xiàng)的和為
,記
.
(1)若是首項(xiàng)為
,公差為
的等差數(shù)列,其中
,
均為正數(shù).
①當(dāng),
,
成等差數(shù)列時(shí),求
的值;
②求證:存在唯一的正整數(shù),使得
.
(2)設(shè)數(shù)列是公比為
的等比數(shù)列,若存在
,
(
,
,
)使得
,求
的值.
【答案】(1)①②見(jiàn)解析(2)
【解析】
先寫(xiě)出
的表達(dá)式.
寫(xiě)出
,
,
,列出等式求解.
等價(jià)于
,
是一個(gè)固定的數(shù),當(dāng)
時(shí),區(qū)間
互不相交,且并集為
,所以n存在且唯一.
先將等式化成基本量表示的形式,有
,設(shè)出函數(shù)
,當(dāng)
時(shí),
,又
,從而找出r,t的值,再解出q.
(1)①因?yàn)?/span>,
,
成等差數(shù)列,
所以,即
,
解得,.
②由,得
,
整理得,解得
,
由于且
.
因此存在唯一的正整數(shù),使得
.
(2)因?yàn)?/span>,所以
.
設(shè),
,
.
則,
因?yàn)?/span>,
,所以
,
所以,即
,即
單調(diào)遞增.
所以當(dāng)時(shí),
,
則,即
,這與
互相矛盾.
所以,即
.
若,則
,
即,與
相矛盾.
于是,所以
,即
.
又,所以
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情后,為了支持企業(yè)復(fù)工復(fù)產(chǎn),某地政府決定向當(dāng)?shù)仄髽I(yè)發(fā)放補(bǔ)助款,其中對(duì)納稅額在萬(wàn)元至
萬(wàn)元(包括
萬(wàn)元和
萬(wàn)元)的小微企業(yè)做統(tǒng)一方案.方案要求同時(shí)具備下列兩個(gè)條件:①補(bǔ)助款
(萬(wàn)元)隨企業(yè)原納稅額
(萬(wàn)元)的增加而增加;②補(bǔ)助款不低于原納稅額
(萬(wàn)元)的
.經(jīng)測(cè)算政府決定采用函數(shù)模型
(其中
為參數(shù))作為補(bǔ)助款發(fā)放方案.
(1)判斷使用參數(shù)是否滿(mǎn)足條件,并說(shuō)明理由;
(2)求同時(shí)滿(mǎn)足條件①、②的參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C的極坐標(biāo)方程為:
,傾斜角為銳角的直線(xiàn)l過(guò)點(diǎn)
與單位圓
相切.
(1)求曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的參數(shù)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生物興趣小組對(duì)冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月
日至11月25日每天的晝夜溫差與實(shí)驗(yàn)室每天100顆種子的發(fā)芽數(shù),得到以下表格
日期 | 11月21日 | 11月22日 | 11月23日 | 11月24日 | 11月25日 |
溫差( | 8 | 9 | 11 | 10 | 7 |
發(fā)芽數(shù)(顆) | 22 | 26 | 31 | 27 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取2組數(shù)據(jù),然后用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2)若選取的是11月21日與11月25日的兩組數(shù)據(jù),請(qǐng)根據(jù)11月22 日至11月24 日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差
的線(xiàn)性回歸方程
,若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,問(wèn)得到的線(xiàn)性回歸方程是否可靠?
附:線(xiàn)性回歸方程 中斜率和截距最小二乘估法計(jì)算公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線(xiàn)
:
上的點(diǎn)按坐標(biāo)變換
,得到曲線(xiàn)
,
為
與
軸負(fù)半軸的交點(diǎn),經(jīng)過(guò)點(diǎn)
且傾斜角為
的直線(xiàn)
與曲線(xiàn)
的另一個(gè)交點(diǎn)為
,與曲線(xiàn)
的交點(diǎn)分別為
,
(點(diǎn)
在第二象限).
(Ⅰ)寫(xiě)出曲線(xiàn)的普通方程及直線(xiàn)
的參數(shù)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,P是側(cè)面
上的動(dòng)點(diǎn),
與
垂直,則直線(xiàn)
與直線(xiàn)AB所成角的正弦值的最小值是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在棱長(zhǎng)為1的正方體中,
,
,
分別是線(xiàn)段
,
,
的中點(diǎn),又
,
分別在線(xiàn)段
,
上,且
.設(shè)平面
平面
,現(xiàn)有下列結(jié)論:
①平面
;
②;
③直線(xiàn)與平面
不垂直;
④當(dāng)變化時(shí),
不是定直線(xiàn).
其中不成立的結(jié)論是______.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞的輕軌給市民出行帶來(lái)了很大的方便,越來(lái)越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開(kāi)汽車(chē)到離家最近的輕軌站,將車(chē)停放在輕軌站停車(chē)場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車(chē)場(chǎng)帶來(lái)很大的壓力.某輕軌站停車(chē)場(chǎng)為了解決這個(gè)問(wèn)題,決定對(duì)機(jī)動(dòng)車(chē)停車(chē)施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過(guò)4小時(shí)不超過(guò)6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過(guò)6小時(shí)不超過(guò)8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過(guò)8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車(chē)場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車(chē)的停留時(shí)間(假設(shè)每輛車(chē)一天內(nèi)在該停車(chē)場(chǎng)僅停車(chē)一次),得到下面的頻數(shù)分布表:
| ||||||
頻數(shù)(車(chē)次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車(chē)中抽取了100輛車(chē)進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車(chē)時(shí)長(zhǎng)與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計(jì) | |
不超過(guò)6小時(shí) | 30 | ||
6小時(shí)以上 | 20 | ||
合計(jì) | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車(chē)是否超過(guò)6小時(shí)”與性別有關(guān)?
(2)(i)表示某輛車(chē)一天之內(nèi)(含一天)在該停車(chē)場(chǎng)停車(chē)一次所交費(fèi)用,求
的概率分布列及期望
;
(ii)現(xiàn)隨機(jī)抽取該停車(chē)場(chǎng)內(nèi)停放的3輛車(chē),表示3輛車(chē)中停車(chē)費(fèi)用大于
的車(chē)輛數(shù),求
的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,若橢圓的長(zhǎng)軸長(zhǎng)等于
的直徑,且
,
成等差數(shù)列
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)、
是橢圓
上不同的兩點(diǎn),線(xiàn)段
的垂直平分線(xiàn)
交
軸于點(diǎn)
,試求點(diǎn)
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com