【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點(diǎn).
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某地區(qū)中小學(xué)生人數(shù)和近視情況如圖1和圖2所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生作為樣本進(jìn)行調(diào)查.
(1)求樣本容量和抽取的高中生近視人數(shù)分別是多少?
(2)在抽取的名高中生中,平均每天學(xué)習(xí)時(shí)間超過(guò)9小時(shí)的人數(shù)為
,其中有12名學(xué)生近視,請(qǐng)完成高中生平均每天學(xué)習(xí)時(shí)間與近視的列聯(lián)表:
平均學(xué)習(xí)時(shí)間不超過(guò)9小時(shí) | 平均學(xué)習(xí)時(shí)間超過(guò)9小時(shí) | 總計(jì) | |
不近視 | |||
近視 | |||
總計(jì) |
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為高中生平均每天學(xué)習(xí)時(shí)間與近視有關(guān)?
附:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2018年10月1日起,中華人民共和國(guó)個(gè)人所得稅
新規(guī)定,公民月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額 | 稅率 |
不超過(guò)1500元的部分 | 3 |
超過(guò)1500元不超過(guò)4500元的部分 | 10 |
超過(guò)4500元不超過(guò)9000元的部分 | 20 |
超過(guò)9000元不超過(guò)35000元 | 25 |
如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?
如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?
寫(xiě)出工資、薪金收入
元
月
與應(yīng)繳納稅金
元
的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在幾何體中,四邊形是邊長(zhǎng)為
的正方形,且
平面
,
,且
,
與平面
所成角的正切值為
.
(1)求證:平面平面
;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
為實(shí)數(shù).
(1)若曲線在點(diǎn)
處的切線方程為
,試求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng),
,且
時(shí),若恒有
,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)對(duì)一塊長(zhǎng)米,寬
米的矩形場(chǎng)地ABCD進(jìn)行改造,點(diǎn)E為線段BC的中點(diǎn),點(diǎn)F在線段CD或AD上(異于A,C),設(shè)
(單位:米),
的面積記為
(單位:平方米),其余部分面積記為
(單位:平方米).
(1)求函數(shù)的解析式;
(2)設(shè)該場(chǎng)地中部分的改造費(fèi)用為
(單位:萬(wàn)元),其余部分的改造費(fèi)用為
(單位:萬(wàn)元),記總的改造費(fèi)用為W單位:萬(wàn)元),求W最小值,并求取最小值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,
,
為邊
的中點(diǎn),將
沿直線
翻折成
.若
為線段
的中點(diǎn),則在
翻折過(guò)程中,下面四個(gè)命題中不正確的是( )
A. 是定值
B. 點(diǎn)在某個(gè)球面上運(yùn)動(dòng)
C. 存在某個(gè)位置,使
D. 存在某個(gè)位置,使平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
是邊長(zhǎng)為4的正方形,側(cè)面
為正三角形且二面角
為
.
(Ⅰ)設(shè)側(cè)面與
的交線為
,求證:
;
(Ⅱ)設(shè)底邊與側(cè)面
所成角的為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求出線的極坐標(biāo)方程及直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)為曲線
上的任意一點(diǎn),求點(diǎn)
到直線
的距離最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com