【題目】自2018年10月1日起,中華人民共和國個人所得稅
新規定,公民月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應納稅所得額,此項稅款按下表分段累計計算:
全月應納稅所得額 | 稅率 |
不超過1500元的部分 | 3 |
超過1500元不超過4500元的部分 | 10 |
超過4500元不超過9000元的部分 | 20 |
超過9000元不超過35000元 | 25 |
如果小李10月份全月的工資、薪金為7000元,那么他應該納稅多少元?
如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?
寫出工資、薪金收入
元
月
與應繳納稅金
元
的函數關系式.
科目:高中數學 來源: 題型:
【題目】已知下面四個命題:
①“若,則
或
”的逆否命題為“若
且
,則
”
②“”是“
”的充分不必要條件
③命題“若,則
”的逆否命題為真命題
④若為假命題,則
、
均為假命題,其中真命題個數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Acos(ωx+φ)(A>0,ω>0,φ<0)的圖象與y軸的交點為(0,1),它的一個最高點和一個最低點的坐標分別為(x0,2),(x0
,﹣2),
(1)若函數f(x)的最小正周期為π,求函數f(x)的解析式;
(2)當x∈(x0,x0)時,f(x)圖象上有且僅有一個最高點和一個最低點,且關于x的方程f(x)﹣a=0在區間[
,
]上有且僅有一解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,
,
分別為
,
的中點,
,如圖1.以
為折痕將
折起,使點
到達點
的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面
;
(2)若平面平面
,求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )
(1)我離開家不久,發現自己把作業本忘在家里了,于是立刻返回家里取了作業本再上學;
(2)我出發后,心情輕松,緩緩行進,后來為了趕時間開始加速;
(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.
A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A. 命題的否定是:
B. 命題中,若
,則
的否命題是真命題
C. 如果為真命題,
為假命題,則
為真命題,
為假命題
D. 是函數
的最小正周期為
的充分不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點.
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若對任意的正整數,總存在正整數
,使得數列
的前
項和
,則稱
是“回歸數列”.
()①前
項和為
的數列
是否是“回歸數列”?并請說明理由.②通項公式為
的數列
是否是“回歸數列”?并請說明理由;
()設
是等差數列,首項
,公差
,若
是“回歸數列”,求
的值.
()是否對任意的等差數列
,總存在兩個“回歸數列”
和
,使得
成立,請給出你的結論,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com