【題目】拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過(guò)原點(diǎn)O作傾斜角為的直線n交l于點(diǎn)A, 交⊙M于另一點(diǎn)B,且AO=OB=2.
(1)求⊙M和拋物線C的方程;
(2)若P為拋物線C上的動(dòng)點(diǎn),求的最小值;
(3)過(guò)l上的動(dòng)點(diǎn)Q向⊙M作切線,切點(diǎn)為S,T,求證:直線ST恒過(guò)一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
【答案】(1)(x-2)2+y2=4。 (2)2.(3).
【解析】試題分析:(1)根據(jù)可求出
的值,從而求出拋物線方程,求出圓心和半徑可求出
的方程;(2)先表示出
然后根據(jù)點(diǎn)在拋物線上將
消去,求關(guān)于
的二次函數(shù)的最小值即可;(3)以點(diǎn)
這圓心,
為半徑作
,則線段
即為
與
的公共弦,設(shè)點(diǎn)
,根據(jù)
,求出直線
的方程,使直線與
無(wú)關(guān),可求出定點(diǎn)坐標(biāo).
試題解析:(1)因?yàn)?/span>=OA·cos60°=2×=1,即p=2,所以拋物線C的方程為y2=4x
設(shè)⊙M的半徑為r,則r=·
=2,所以⊙M的方程為(x-2)2+y2=4。
(2)設(shè)P(x,y)(x≥0),則·
=(2-x,-y)(1-x,-y)=x2-3x+2+y2=x2+x+2,
所以當(dāng)x=0時(shí),·
有最小值為2.
(3)以點(diǎn)Q這圓心,QS為半徑作⊙Q,則線段ST即為⊙Q與⊙M的公共弦.
設(shè)點(diǎn)Q(-1,t),則QS2=QM2-4=t2+5,所以⊙Q的方程為(x+1)2+(y-t)2=t2+5,
從而直線QS的方程為3x-ty-2=0(*),
因?yàn)?/span>一定是方程(*)的解,所以直線QS恒過(guò)一個(gè)定點(diǎn),且該定點(diǎn)坐標(biāo)為(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)若且
,
.
(i)求實(shí)數(shù)的最大值;
(ii)證明不等式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)的圖象如圖所示,曲線BCD為拋物線的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間
上單調(diào),求
的取值范圍;
(2)若函數(shù)在
上無(wú)零點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3-x2+1(xR),其中a>0.
(1)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)若,
為直線
與
軸的交點(diǎn),
是圓
上一動(dòng)點(diǎn),求
的最大值;
(2)若直線被圓
截得的弦長(zhǎng)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 .
(1)若函數(shù)的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)在區(qū)間
上是減函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某班一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問(wèn)題.
(Ⅰ)求全班人數(shù)及分?jǐn)?shù)在之間的頻率;
(Ⅱ)現(xiàn)從分?jǐn)?shù)在之間的試卷中任取 3 份分析學(xué)生情況,設(shè)抽取的試卷分?jǐn)?shù)在
的份數(shù)為
,求
的分布列和數(shù)學(xué)望期.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,直角梯形中,
,
,點(diǎn)
分別在
上,且
,
,
,現(xiàn)將梯形
沿
折起,使平面
與平面
垂直(如圖乙).
(Ⅰ)求證: 平面
;
(II)當(dāng)的長(zhǎng)為何值時(shí),二面角
的大小為
?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com