分析 (Ⅰ)根據f(x)的部分圖象求出A、ω以及φ的值即可;
(Ⅱ)求出f(x-$\frac{π}{12}$)=sin2x,化簡函數F(x),
根據題意設t=sin2x,則由x∈[0,$\frac{π}{2}$]時t∈[0,1],
把F(x)=0化為3t2+mt+2=0在[0,1]上有兩個不等的實數根,
由此求出實數m的取值范圍.
解答 解:(Ⅰ)根據f(x)=Asin(ωx+φ)的部分圖象知,
A=1,$\frac{T}{2}$=$\frac{2π}{3}$-$\frac{π}{6}$=$\frac{π}{2}$,
∴T=π,
∴ω=$\frac{2π}{T}$=2;
由“五點法畫圖”知,
2×$\frac{π}{6}$+φ=$\frac{π}{2}$,解得φ=$\frac{π}{6}$;
∴函數f(x)=sin(2x+$\frac{π}{6}$);
(Ⅱ)∵f(x-$\frac{π}{12}$)=sin(2x-$\frac{π}{6}$+$\frac{π}{6}$)=sin2x,
∴函數F(x)=3[f(x-$\frac{π}{12}$)]2+mf(x-$\frac{π}{12}$)+2
=3sin2(2x)+msin2x+2;
在區間[0,$\frac{π}{2}$]上有四個不同零點,
設t=sin2x,由x∈[0,$\frac{π}{2}$],得2x∈[0,π],即sin2x∈[0,1],
∴t∈[0,1],
令F(x)=0,則3t2+mt+2=0在[0,1]上有兩個不等的實數根,
令g(t)=3t2+mt+2
則由$\left\{\begin{array}{l}{△>0}\\{g(0)≥0}\\{g(1)>0}\\{0<-\frac{m}{6}<1}\end{array}\right.$,解得-5<m<-2$\sqrt{6}$;
∴實數m的取值范圍是-5<m<-2$\sqrt{6}$.
點評 本題考查了由部分圖象求三角函數解析式的應用問題,也考查了函數零點與方程根的應用問題,是綜合性問題.
科目:高中數學 來源: 題型:選擇題
A. | f(-2)<f(1)<f(3) | B. | f(1)<f(-2)<f(3) | C. | f(3)<f(-2)<f(1) | D. | f(-2)<f(3)<f(1) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,$\frac{a}{4}$)或(0,-$\frac{a}{4}$) | B. | (0,$\frac{1}{4a}$)或(0,-$\frac{1}{4a}$) | C. | $(0,\frac{1}{4a})$ | D. | $(\frac{1}{4a},0)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com