【題目】已知橢圓的離心率為
,直線
,圓
的方程為
,直線
被圓
截得的弦長與橢圓
的短軸長相等,橢圓
的左頂點為
,上頂點為
.
(1)求橢圓的方程;
(2)已知經過點且斜率為
直線
與橢圓
有兩個不同的交點
和
,請問是否存在常數
,使得向量
與
共線?如果存在,求出
的值;如果不存在,請說明理由.
【答案】(1)(2)不存在;詳見解析
【解析】
(1)求得圓心到直線的距離,利用直線和圓相交所得弦長公式列方程,解方程求得的值,結合橢圓離心率以及
,求得
的值,進而求得橢圓離心率.
(2)設出直線的方程,聯立直線
的方程和橢圓的方程,寫出根于系數關系以及判別式,利用
與
共線以及向量共線的坐標表示列方程,由此判斷出不存在符合題意的常數
.
(1)圓心到直線
的距離為
,
直線被圓
截得的弦長
,
.
由橢圓離心率為,結合
可得
,
.即橢圓
的方程為:
.
(2)設直線的方程為
,
代入橢圓方程,整理,得,①
因為直線與橢圓
有兩個不同的交點
和
等價于
,
解得.
設,
,則
,
由①得,②
又,③
因為,所以
.
所以與
共線等價于
.
將②③代入上式,解得,
(舍).
因為不滿足,
所以不存在常數,使得向量
與
共線.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
上任意一點到兩個焦點的距離和為4,且離心率為
.
(1)求橢圓的方程.
(2)過作互相垂直的兩條直線分別與橢圓
交于
,
和
,
,設
中點為
,
中點為
,試探究直線
是否過定點?若是,求出該定點;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠的,
,
三個不同車間生產同一產品的數量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產品中共抽取6件樣品進行檢測:
車間 | |||
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,
,
各車間產品的數量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產品來自相同車間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若拋物線的焦點為
,
是坐標原點,
為拋物線上的一點,向量
與
軸正方向的夾角為60°,且
的面積為
.
(1)求拋物線的方程;
(2)若拋物線的準線與
軸交于點
,點
在拋物線
上,求當
取得最大值時,直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:經過定點
,其左右集點分別為
,
且
,過右焦
且與坐標軸不垂直的直線l與橢圈交于P,Q兩點.
(1)求橢圓C的方程:
(2)若O為坐標原點,在線段上是否存在點
,使得以
,
為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的焦點為
和
,過
的直線
交
于
兩點,過
作與
軸垂直的直線
,又知點
,直線
記為
,
與
交于點
.設
,已知當
時,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:無論如何變化,點
的橫坐標是定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產—運輸—銷售一體化的直銷供應模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.
(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據統計某種有機蔬菜的產量與有機肥料的用量有關系,每個有機蔬菜大棚產量的增加量(百斤)與使用堆漚肥料
(千克)之間對應數據如下表
使用堆漚肥料 | 2 | 4 | 5 | 6 | 8 |
產量的增加量 | 3 | 4 | 4 | 4 | 5 |
依據表中的數據,用最小二乘法求出關于
的線性回歸方程
;并根據所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產量增加量
是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:,且
);
前8小時內的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時銷售量發生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,當購進17份比購進18份的利潤的期望值大時,求的取值范圍.
附:回歸直線方程為,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C1:x2=2py(p>0),圓C2:x2+y2﹣8y+12=0的圓心M到拋物線C1的準線的距離為,點P是拋物線C1上一點,過點P,M的直線交拋物線C1于另一點Q,且|PM|=2|MQ|,過點P作圓C2的兩條切線,切點為A、B.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)求直線PQ的方程及的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com