A. | 向左平行平移$\frac{π}{2}$個單位長度 | B. | 向右平行平移$\frac{π}{4}$個單位長度 | ||
C. | 向右平行平移$\frac{π}{2}$個單位長度 | D. | 向左平行平移$\frac{π}{4}$個單位長度 |
分析 利用y=Asin(ωx+φ)的圖象變換規律,得出結論.
解答 解:∵y=2sin(2x-$\frac{π}{3}$)=2sin2(x-$\frac{π}{6}$),y=2sin(2x+$\frac{π}{6}$)=2sin2(x+$\frac{π}{12}$),$\frac{π}{12}$-(-$\frac{π}{6}$)=$\frac{π}{4}$,
故把函數y=2sinx(2x+$\frac{π}{6}$)的圖象上所有的點,向右平行平移$\frac{π}{4}$個單位長度,
可得y=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{6}$=2sin(2x-$\frac{π}{3}$)的圖象,
故選:B.
點評 本題主要考查y=Asin(ωx+φ)的圖象變換規律,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 因為f(0)?f(2)>0,所以f(x)在(0,2)內沒有零點 | |
B. | 因為1是f(x)的一個零點,所以f(0)?f(2)<0 | |
C. | 由于f(x)在區間(-∞,0)上單調遞減,所以f(x)在(-∞,0)內有唯一的一個零點 | |
D. | 以上說法都不對 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $a+\frac{1}>b+\frac{1}{a}$ | B. | $\frac{1}{{a{b^2}}}>\frac{1}{{{a^2}b}}$ | C. | $\frac{1}{a}<\frac{1}$ | D. | ab>b2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com