日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F2,O為坐標原點,P是雙曲線在第一象限上的點且滿足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點N,又點M滿足$\overrightarrow{MO}$=$\overrightarrow{OP}$且∠MF2N=120°,則雙曲線C的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 由題意,|PF1|=2|PF2|,|PF1|-|PF2|=2a,可得|PF1|=4a,|PF2|=2a,由∠MF2N=120°,可得∠F1PF2=120°,由余弦定理可得4c2=16a2+4a2-2•4a•2a•cos120°,即可求出雙曲線C的離心率.

解答 解:由題意,|PF1|=2|PF2|,
由雙曲線的定義可得,|PF1|-|PF2|=2a,
可得|PF1|=4a,|PF2|=2a,
由四邊形PF1MF2為平行四邊形,
又∠MF2N=120°,可得∠F1PF2=120°,
在三角形PF1F2中,由余弦定理可得
4c2=16a2+4a2-2•4a•2a•cos120°,
即有4c2=20a2+8a2,即c2=7a2
可得c=$\sqrt{7}$a,
即e=$\frac{c}{a}$=$\sqrt{7}$.
故選:B.

點評 本題考查雙曲線C的離心率,注意運用雙曲線的定義和三角形的余弦定理,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=ax2+4x-1.
(1)當a=1時,對任意x1,x2∈R,且x1≠x2,試比較f($\frac{{x}_{1}+{x}_{2}}{2}$)與$\frac{f({x}_{1})+f({x}_{2})}{2}$的大;
(2)對于給定的正實數a,有一個最小的負數g(a),使得x∈[g(a),0]時,-3≤f(x)≤3都成立,則當a為何值時,g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數f(x)=x2+2x+a,g(x)=lnx-2x,如果存在${x_1}∈[{\frac{1}{2},2}]$,使得對任意的${x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,則實數a的取值范圍是(-∞,ln2-$\frac{21}{4}$].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,2).
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值;
(Ⅱ)λ為何值時,$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.設相量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,則實數m等于( 。
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.$\frac{9}{10}$D.-$\frac{9}{10}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的短軸長為2$\sqrt{3}$,離心率為$\frac{1}{2}$,點F為其在y軸正半軸上的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若一動圓過點F,且與直線y=-1相切,求動圓圓心軌跡C1的方程;
(Ⅲ)過F作互相垂直的兩條直線l1,l2,其中l1交曲線C1于M、N兩點,l2交橢圓C于P、Q兩點,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知點A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R),若曲線x2+y2=3上存在點B使∠APB=60°,則t的最大值為( 。
A.$\sqrt{3}$B.2C.1+$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.在復平面內,復數$\frac{3i}{1-i}$對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數之比為1:3,且成績分布在[40,100],分數在80以上(含80)的同學獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見圖).
(1)填寫下面的2×2列聯表,能否有超過95%的把握認為“獲獎與學生的文理科有關”?
(2)將上述調査所得的頻率視為概率,現從參賽學生中,任意抽取3名學生,記“獲獎”學生人數為X,求X的分布列及數學期望.
文科生理科生合計
獲獎5
不獲獎
合計200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧洲妇女成人淫片aaa视频 | 天堂网色 | 欧美日韩在线看 | 久久久久久久久免费视频 | 日韩亚洲视频 | 欧美日韩亚洲另类 | www国产亚洲 | 日韩精品1区2区3区 欧美高清不卡 | 亚洲国产精久久久久久久 | 久久久久久高潮国产精品视 | 日日摸天天做天天添天天欢 | 亚洲视频在线观看一区二区三区 | 国产一级淫片a级aaa | 亚洲av毛片一级二级在线 | 国产伦精品一区二区三区在线 | 欧美日韩国产在线观看 | 国产精品高清在线 | 日本xxxxx片免费观看19 | 国产一区二区三区久久99 | 亚洲天堂免费 | 午夜视频免费 | 国产一级片一区二区三区 | 欧美黄a | 黄色免费在线观看视频 | 国产日韩精品视频 | 嫩草网站入口 | 久久久久久亚洲精品视频 | 日韩欧美在线播放 | 中文字幕一区二区三 | 国产成人免费视频网站高清观看视频 | 亚洲福利小视频 | 一级毛片电影 | 精品在线免费视频 | 国内精品国产三级国产在线专 | 欧美视频在线观看一区 | 国产精品视频一区二区三区四区五区 | 精品一区二区视频 | 欧美一级久久 | 欧美精品一区二区三区蜜桃视频 | 欧美日韩一区二区三区在线观看 | 91精品国产乱码久久久久久久久 |