分析 作出不等式組對應的平面區域,利用目標函數的幾何意義,進行求最值即可.
解答 解:由z=x-2y得y=$\frac{1}{2}$x-$\frac{z}{2}$,作出不等式組$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥0\end{array}\right.$,對應的平面區域如圖(陰影部分):
平移直線y=$\frac{1}{2}$x-$\frac{z}{2}$,由圖象可知當直線y=$\frac{1}{2}$x-$\frac{z}{2}$過點A點,
由$\left\{\begin{array}{l}{x-y=0}\\{x+y=1}\end{array}\right.$可得A($\frac{1}{2}$,$\frac{1}{2}$)時,直線y=$\frac{1}{2}$x-$\frac{z}{2}$的截距最大,此時z最小,
∴目標函數z=x-2y的最小值是-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.
點評 本題主要考查線性規劃的基本應用,利用目標函數的幾何意義是解決問題的關鍵,利用數形結合是解決問題的基本方法.
科目:高中數學 來源: 題型:選擇題
A. | $8\sqrt{6}π$ | B. | $\sqrt{6}π$ | C. | 24π | D. | 6π |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com